24 research outputs found
TESS discovery of a super-Earth and two sub-Neptunes orbiting the bright, nearby, Sun-like star HD 22946
We report the Transiting Exoplanet Survey Satellite (TESS) discovery of a
three-planet system around the bright Sun-like star HD~22946(V=8.3 mag),also
known as TIC~100990000, located 63 parsecs away.The system was observed by TESS
in Sectors 3, 4, 30 and 31 and two planet candidates, labelled TESS Objects of
Interest (TOIs) 411.01 (planet ) and 411.02 (planet ), were identified on
orbits of 9.57 and 4.04 days, respectively. In this work, we validate the two
planets and recover an additional single transit-like signal in the light
curve, which suggests the presence of a third transiting planet with a longer
period of about 46 days.We assess the veracity of the TESS transit signals and
use follow-up imaging and time series photometry to rule out false positive
scenarios, including unresolved binary systems, nearby eclipsing binaries or
background/foreground stars contaminating the light curves. Parallax
measurements from Gaia EDR3, together with broad-band photometry and
spectroscopic follow-up by TFOP allowed us to constrain the stellar parameters
of TOI-411, including its radius of. Adopting this value,
we determined the radii for the three exoplanet candidates and found that
planet is a super-Earth, with a radius of , while
planet and are sub-Neptunian planets, with radii
of and respectively. By using
dynamical simulations, we assessed the stability of the system and evaluated
the possibility of the presence of other undetected, non-transiting planets by
investigating its dynamical packing. We find that the system is dynamically
stable and potentially unpacked, with enough space to host at least one more
planet between and .(Abridged)Comment: 21 pages, 12 figures. Accepted for publication on A&
In vivo laser-tissue interactions and healing responses from 20- vs 100-millisecond pulse pascal photocoagulation burns
OBJECTIVES: To compare in vivo burn morphologic features and healing responses of Pascal 20- and 100-millisecond panretinal photocoagulation (PRP) burns in proliferative diabetic retinopathy. DESIGN: Prospective randomized controlled trial with 24 eyes assigned to either 20- or 100-millisecond Pascal PRP. Fundus autofluorescence and Fourier domain optical coherence tomography (FD-OCT) were performed 1 hour and 2 and 4 weeks after treatment. Main outcome measures included burn morphologic features on FD-OCT and greatest linear diameter (GLD) of laser burns as evaluated in 6 standard Early Treatment of Diabetic Retinopathy Study photographic fields using autofluorescence. RESULTS: The contemporaneous increase in autofluorescence is observed with increasing pulse duration. Differences in mean GLD between 100- and 20-millisecond burns were 63 mum at 1 hour and 198 mum at 4 weeks (P < .001 for both). At 4 weeks, all burns corresponded to defects at the junction of inner and outer segments of photoreceptors (JI/OSP) and apical retinal pigment epithelium. After 4 weeks, the GLD of 20-millisecond burns reduced significantly by 35% (P < .001), with no change in 100-millisecond burns. CONCLUSIONS: All burns initially appear as equivalent square-edged, columnar foci of hyperreflectivity in the outer retina. Pascal 20-millisecond burns progressively reduce in size, and this suggests a novel healing response localized to the JI/OSP and apical retinal pigment epithelium. The higher-fluence 100-millisecond burns develop larger defects due to thermal blooming and collateral damage