3 research outputs found

    MOESM1 of Lessons learned from the microbial ecology resulting from different inoculation strategies for biogas production from waste products of the bioethanol/sugar industry

    No full text
    Additional file 1: Figure S1. Duplicate T-RFLP profiles of the methanogenic community dynamics for each reactor in order to show the reproducibility of the T-RFLP approach. Figure S2. Rarefaction curves of the pyrosequencing data of the 16S ribosomal RNA genes from the four co-digestion reactors (R3.5, R3.6, R3.7 and R3.8) at three different sampling points along the experiment. Table S1. Beta diversity index showing the community similarities between samples. Figure S3. 3D PCA diagram of the beta diversity. Figure S4. N-MDS plot showing the Bray–Curtis similarity of the methanogenic communities in parallel reactors

    Viral Communities Contribute More to the Lysis of Antibiotic-Resistant Bacteria than the Transduction of Antibiotic Resistance Genes in Anaerobic Digestion Revealed by Metagenomics

    No full text
    Ecological role of the viral community on the fate of antibiotic resistance genes (ARGs) (reduction vs proliferation) remains unclear in anaerobic digestion (AD). Metagenomics revealed a dominance of Siphoviridae and Podoviridae among 13,895 identified viral operational taxonomic units (vOTUs) within AD, and only 21 of the vOTUs carried ARGs, which only accounted for 0.57 ± 0.43% of AD antibiotic resistome. Conversely, ARGs locating on plasmids and integrative and conjugative elements accounted for above 61.0%, indicating a substantial potential for conjugation in driving horizontal gene transfer of ARGs within AD. Virus–host prediction based on CRISPR spacer, tRNA, and homology matches indicated that most viruses (80.2%) could not infect across genera. Among 480 high-quality metagenome assembly genomes, 95 carried ARGs and were considered as putative antibiotic-resistant bacteria (pARB). Furthermore, lytic phages of 66 pARBs were identified and devoid of ARGs, and virus/host abundance ratios with an average value of 71.7 indicated extensive viral activity and lysis. The infectivity of lytic phage was also elucidated through laboratory experiments concerning changes of the phage-to-host ratio, pH, and temperature. Although metagenomic evidence for dissemination of ARGs by phage transduction was found, the higher proportion of lytic phages infecting pARBs suggested that the viral community played a greater role in reducing ARB numbers than spreading ARGs in AD

    Viral Communities Contribute More to the Lysis of Antibiotic-Resistant Bacteria than the Transduction of Antibiotic Resistance Genes in Anaerobic Digestion Revealed by Metagenomics

    No full text
    Ecological role of the viral community on the fate of antibiotic resistance genes (ARGs) (reduction vs proliferation) remains unclear in anaerobic digestion (AD). Metagenomics revealed a dominance of Siphoviridae and Podoviridae among 13,895 identified viral operational taxonomic units (vOTUs) within AD, and only 21 of the vOTUs carried ARGs, which only accounted for 0.57 ± 0.43% of AD antibiotic resistome. Conversely, ARGs locating on plasmids and integrative and conjugative elements accounted for above 61.0%, indicating a substantial potential for conjugation in driving horizontal gene transfer of ARGs within AD. Virus–host prediction based on CRISPR spacer, tRNA, and homology matches indicated that most viruses (80.2%) could not infect across genera. Among 480 high-quality metagenome assembly genomes, 95 carried ARGs and were considered as putative antibiotic-resistant bacteria (pARB). Furthermore, lytic phages of 66 pARBs were identified and devoid of ARGs, and virus/host abundance ratios with an average value of 71.7 indicated extensive viral activity and lysis. The infectivity of lytic phage was also elucidated through laboratory experiments concerning changes of the phage-to-host ratio, pH, and temperature. Although metagenomic evidence for dissemination of ARGs by phage transduction was found, the higher proportion of lytic phages infecting pARBs suggested that the viral community played a greater role in reducing ARB numbers than spreading ARGs in AD
    corecore