12 research outputs found

    Ecobiophysical Aspects on Nanosilver Biogenerated from Citrus reticulata

    Get PDF
    In recent years, a considerable interest was paid to ecological strategies in management of plant diseases and plant growth. Metallic nanoparticles (MNPs) gained considerable interest as alternative to pesticides due to their interesting properties. Green synthesis of MNPs using plant extracts is very advantageous taking into account the fact that plants are easily available and eco-friendly and possess many phytocompounds that help in bioreduction of metal ions. In this research work, we phytosynthesized AgNPs from aqueous extract of Citrus reticulata peels, with high antioxidant, antibacterial, and antifungal potential. These “green” AgNPs were characterized by modern biophysical methods (absorption and FTIR spectroscopy, AFM, and zeta potential measurements). The nanobioimpact of Citrus-based AgNPs on four invasive wetland plants, Cattail (Typha latifolia), Flowering-rush (Butomus umbellatus), Duckweed (Lemna minor), and Water-pepper (Polygonum hydropiper), was studied by absorption spectroscopy, by monitoring the spectral signature of chlorophyll. The invasive plants exhibited different behavior under AgNP stress. Deep insights were obtained from experiments conducted on biomimetic membranes marked with chlorophyll a. Our results pointed out the potential use of Citrus-based AgNPs as alternative in controlling pathogens in aqueous media and in management of aquatic weeds growth

    Novel Green Nanotechnologies Applied in Environmental Protection and Health

    No full text
    Today, humanity is facing serious problems due to the environmental pollution [...

    Biocomposite Materials Derived from <i>Andropogon halepensis</i>: Eco-Design and Biophysical Evaluation

    No full text
    This research work presents a “green” strategy of weed valorization for developing silver nanoparticles (AgNPs) with promising interesting applications. Two types of AgNPs were phyto-synthesized using an aqueous leaf extract of the weed Andropogon halepensis L. Phyto-manufacturing of AgNPs was achieved by two bio-reactions, in which the volume ratio of (phyto-extract)/(silver salt solution) was varied. The size and physical stability of Andropogon—AgNPs were evaluated by means of DLS and zeta potential measurements, respectively. The phyto-developed nanoparticles presented good free radicals-scavenging properties (investigated via a chemiluminescence technique) and also urease inhibitory activity (evaluated using the conductometric method). Andropogon—AgNPs could be promising candidates for various bio-applications, such as acting as an antioxidant coating for the development of multifunctional materials. Thus, the Andropogon-derived samples were used to treat spider silk from the spider Pholcus phalangioides, and then, the obtained “green” materials were characterized by spectral (UV-Vis absorption, FTIR ATR, and EDX) and morphological (SEM) analyses. These results could be exploited to design novel bioactive materials with applications in the biomedical field

    Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

    No full text
    In the last decade, building biohybrid materials has gained considerable interest in the field of nanotechnology. This paper describes an original design for bionanoarchitectures with interesting properties and potential bioapplications. Multilamellar lipid vesicles (obtained by hydration of a dipalmitoyl phosphatidylcholine thin film) with and without cholesterol were labelled with a natural photopigment (chlorophyll a), which functioned as a sensor to detect modifications in the artificial lipid bilayers. These biomimetic membranes were used to build non-covalent structures with single-walled carbon nanotubes. Different biophysical methods were employed to characterize these biohybrids such as: UV–vis absorption and emission spectroscopy, zeta potential measurements, AFM and chemiluminescence techniques. The designed, carbon-based biohybrids exhibited good physical stability, good antioxidant and antimicrobial properties, and could be used as biocoating materials. As compared to the cholesterol-free samples, the cholesterol-containing hybrid structures demonstrated better stability (i.e., their zeta potential reached the value of −36.4 mV), more pronounced oxygen radical scavenging ability (affording an antioxidant activity of 73.25%) and enhanced biocidal ability, offering inhibition zones of 12.4, 11.3 and 10.2 mm in diameter, against Escherichia coli, Staphylococcus aureus and Enterococcus faecalis, respectively

    Effective Lipid Nanocarriers Based on Linseed Oil for Delivery of Natural Polyphenolic Active

    No full text
    The main purpose of the present research was to test the ability of nanostructured lipid carriers (NLCs) to efficiently host a hydrophilic polyphenol active with health-promoting activities (caffeic acid (CA)). The caffeic acid-loaded lipid nanocarriers (CA-NLCs) were obtained by high-pressure homogenization technique using a surfactant mixture of Tween 20 and L-α-phosphatidylcholine in association with a lipid mixture of linseed oil, hexadecyl palmitate, and glycerol monostearate. In the first stage, the proportion between surfactant mixture and lipid phase has been varied to obtain appropriate stable nanocarriers. The optimized NLCs have been further loaded with different amounts of caffeic acid and were analyzed in terms of physical stability, size characteristics, and encapsulation efficiency. The antioxidant activity of CA-loaded NLCs and their release behavior have been tested by specific in vitro methods, e.g., ABTS (2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) assay and release experiments, by Franz cell diffusion. The ABTS assay highlighted a high antioxidant potential of the caffeic acid in association with linseed oil. The capacity to capture ABTS cationic radicals was superior for the NLC entrapping an initial amount of 1.5% CA, the level of antioxidant capacity being 91.3%. The in vitro release experiments showed a different release behavior, depending on the initial amount of caffeic acid used. NLC loaded with a higher concentration of CA manifests a gradual slow release, e.g., 45% CA after 24 h of in vitro experiments, while the NLC loaded with smaller concentration of CA assured a higher release in time, around 65%

    Burdock-Derived Composites Based on Biogenic Gold, Silver Chloride and Zinc Oxide Particles as Green Multifunctional Platforms for Biomedical Applications and Environmental Protection

    No full text
    Green nanotechnology is a rapidly growing field linked to using the principles of green chemistry to design novel nanomaterials with great potential in environmental and health protection. In this work, metal and semiconducting particles (AuNPs, AgClNPs, ZnO, AuZnO, AgClZnO, and AuAgClZnO) were phytosynthesized through a &ldquo;green&rdquo; bottom-up approach, using burdock (Arctium lappa L.) aqueous extract. The morphological (SEM/TEM), structural (XRD, SAED), compositional (EDS), optical (UV&ndash;Vis absorption and FTIR spectroscopy), photocatalytic, and bio-properties of the prepared composites were analyzed. The particle size was determined by SEM/TEM and by DLS measurements. The phytoparticles presented high and moderate physical stability, evaluated by zeta potential measurements. The investigation of photocatalytic activity of these composites, using Rhodamine B solutions&rsquo; degradation under solar light irradiation in the presence of prepared powders, showed different degradation efficiencies. Bioevaluation of the obtained composites revealed the antioxidant and antibacterial properties. The tricomponent system AuAgClZnO showed the best antioxidant activity for capturing ROS and ABTS&bull;+ radicals, and the best biocidal action against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The &ldquo;green&rdquo; developed composites can be considered potential adjuvants in biomedical (antioxidant or biocidal agents) or environmental (as antimicrobial agents and catalysts for degradation of water pollutants) applications

    Cytotoxicity, Antioxidant, Antibacterial, and Photocatalytic Activities of ZnO–CdS Powders

    No full text
    In this work, ZnO&ndash;CdS composite powders synthesized by a simple chemical precipitation method were thoroughly characterized. The morphological, structural, compositional, photocatalytical, and biological properties of the prepared composites were investigated in comparison with those of the pristine components and correlated with the CdS concentration. ZnO&ndash;CdS composites contain flower-like structures, their size being tuned by the CdS amount added during the chemical synthesis. The photocatalytic activity of the composites was analyzed under UV irradiation using powders impregnated with methylene blue; the tests confirming that the presence of CdS along the ZnO in composites can improve the dye discoloration. The biological properties such as antioxidant capacity, antibacterial activity, and cytotoxicity of the ZnO, CdS, and ZnO&ndash;CdS composites were evaluated. Thus, the obtained composites presented medium antioxidant effect, biocidal activity against Escherichia coli, and no toxicity (at concentrations less than 0.05 mg/mL for composites with a low CdS amount) for human fibroblast cells. Based on these results, such composites can be used as photocatalytic and/or biocidal additives for photoactive coatings, paints, or epoxy floors, which in their turn can provide a cleaner and healthier environment

    Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health

    No full text
    A critical overview of current approaches to the development of starch-containing packaging, integrating the principles of green chemistry (GC), green technology (GT) and green nanotechnology (GN) with those of green packaging (GP) to produce materials important for both us and the planet is given. First, as a relationship between GP and GC, the benefits of natural bioactive compounds are analyzed and the state-of-the-art is updated in terms of the starch packaging incorporating green chemicals that normally help us to maintain health, are environmentally friendly and are obtained via GC. Newer approaches are identified, such as the incorporation of vitamins or minerals into films and coatings. Second, the relationship between GP and GT is assessed by analyzing the influence on starch films of green physical treatments such as UV, electron beam or gamma irradiation, and plasma; emerging research areas are proposed, such as the use of cold atmospheric plasma for the production of films. Thirdly, the approaches on how GN can be used successfully to improve the mechanical properties and bioactivity of packaging are summarized; current trends are identified, such as a green synthesis of bionanocomposites containing phytosynthesized metal nanoparticles. Last but not least, bioinspiration ideas for the design of the future green packaging containing starch are presented

    Novel Ecogenic Plasmonic Biohybrids as Multifunctional Bioactive Coatings

    No full text
    The objective of the present study is the valorization of natural resources and the recycling of vegetal wastes by converting them into novel plasmonic bio-active hybrids. Thus, a &ldquo;green&rdquo; approach was used to design pectin-coated bio-nanosilver. Silver nanoparticles were generated from two common garden herbs (Mentha piperita and Amaranthus retroflexus), and pectin was extracted from lemon peels. The samples were characterized by the following methods: Ultraviolet&ndash;visible (UV-Vis) absorption spectroscopy, Fourier Transform Infrared (FT-IR), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), dynamic light scattering (DLS), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM)&ndash;Energy-dispersive X-ray Spectroscopy (EDX), and zeta potential measurements. Microscopic investigations revealed the spherical shape and the nano-scale size of the prepared biohybrids. Their bioperformances were checked in terms of antioxidant and antibacterial activity. The developed plasmonic materials exhibited a strong ability to scavenge short-life (96.1% &divide; 98.7%) and long-life (39.1% &divide; 91%) free radicals. Microbiological analyses demonstrated an impressive antibacterial effectiveness of pectin-based hybrids against Escherichia coli. The results are promising, and the obtained biomaterials could be used in many bio-applications, especially as antioxidant and antimicrobial biocoatings
    corecore