40 research outputs found
Building with Nature perspectives: Cross-disciplinary BwN approaches in coastal regions
This publication offers an overview of the latest cross-disciplinary developments in the field of Building with Nature (BwN) for the protection of coastal regions. The key philosophy of BwN is the employment of natural processes to serve societal goals, such as flood safety. The starting point is a systems-based approach, making interventions that employ the shaping forces of the natural system to perform measures by self-regulation. Initial pilots of this innovative approach originate from coastal engineering, with the Sand Motor along the coast of South Holland as one of the prime examples. From here, the BwN approach has evolved into a new generation of nature-based hydraulic solutions, such as mangrove forests, coastal reefs, and green dikes
Building with Nature as a cross-disciplinary approach: The role of hybrid contributions
The incentive for this publication was to expand the realm of enquiry around the topic of Building with Nature (BwN), for two main reasons. First to gain an interdisciplinary, and therefore deeper, understanding of BwN as an object of study. Secondly, but no less important, is an understanding of how different forms of knowledge contribute to our learning regarding BwN. When we understand the contribution of several academic disciplines and knowledge from practice, we may eventually get to the point where we can identify how they can collaborate successfully to contribute to BwN as an interdisciplinary field
Building with Nature perspectives
This publication offers an overview of the latest cross-disciplinary developments in the field of Building with Nature (BwN) for the protection of coastal regions. The key philosophy of BwN is the employment of natural processes to serve societal goals, such as flood safety. The starting point is a systems-based approach, making interventions that employ the shaping forces of the natural system to perform measures by self-regulation. Initial pilots of this innovative approach originate from coastal engineering, with the Sand Motor along the coast of South Holland as one of the prime examples. From here, the BwN approach has evolved into a new generation of nature-based hydraulic solutions, such as mangrove forests, coastal reefs, and green dikes
Functional independence and health-related functional status following spinal cord injury: A prospective study of the association with physical capacity
Objective: To determine changes in functional independence following spinal cord injury and to evaluate the association between functional independence and physical capacity. Design: Multi-centre prospective cohort study. Subjects: Patients with spinal cord injury admitted for initial rehabilitation. Methods: The motor Functional Independence Measure (FIMmotor) was determined at the start of rehabilitation (n=176), 3 months later (n=124), at discharge (n=160) and one year after discharge from inpatient rehabilitation (n=133). One year after discharge, physical and social dimensions of health-related functional status (Sickness Impact Profile 68; SIP68) were determined. On each occasion, physical capacity was established by measuring arm muscle strength, peak power output and peak oxygen uptake. Results: Multi-level random coefficient analyses revealed that FIMmotor improved during inpatient rehabilitation, but stabilized thereafter. Changes in FIMmotor were associated with peak power output. Multiple regression models showed that FIMmotor and peak power output at discharge were associated with FIMmotor one year after discharge (R2=0.85), and that peak power output at discharge was associated with the social dimension of the SIP68 (R2=0.18) one year after discharge. Conclusion: Functional independence improves during inpatient rehabilitation, and functional independence is positively associated with peak power output
Class III antiarrhythmic drugs amiodarone and dronedarone impair KIR2.1 backward trafficking
Drug-induced ion channel trafficking disturbance can cause cardiac arrhythmias. The subcellular level at which drugs interfere in trafficking pathways is largely unknown. KIR2.1 inward rectifier channels, largely responsible for the cardiac inward rectifier current (IK1), are degraded in lysosomes. Amiodarone and dronedarone are class III antiarrhythmics. Chronic use of amiodarone, and to a lesser extent dronedarone, causes serious adverse effects to several organs and tissue types, including the heart. Both drugs have been described to interfere in the late-endosome/lysosome system. Here we defined the potential interference in KIR2.1 backward trafficking by amiodarone and dronedarone. Both drugs inhibited IK1 in isolated rabbit ventricular cardiomyocytes at supraclinical doses only. In HK-KWGF cells, both drugs dose- and time-dependently increased KIR2.1 expression (2.0 ± 0.2-fold with amiodarone: 10 μM, 24 hrs; 2.3 ± 0.3-fold with dronedarone: 5 μM, 24 hrs) and late-endosomal/lysosomal KIR2.1 accumulation. Increased KIR2.1 expression level was also observed in the presence of Nav1.5 co-expression. Augmented KIR2.1 protein levels and intracellular accumulation were also observed in COS-7, END-2, MES-1 and EPI-7 cells. Both drugs had no effect on Kv11.1 ion channel protein expression levels. Finally, amiodarone (73.3 ± 10.3% P < 0.05 at −120 mV, 5 μM) enhanced IKIR2.1 upon 24-hrs treatment, whereas dronedarone tended to increase IKIR2.1 and it did not reach significance (43.8 ± 5.5%, P = 0.26 at −120 mV; 2 μM). We conclude that chronic amiodarone, and potentially also dronedarone, treatment can result in enhanced IK1 by inhibiting KIR2.1 degradation
Class III antiarrhythmic drugs amiodarone and dronedarone impair KIR2.1 backward trafficking
Drug-induced ion channel trafficking disturbance can cause cardiac arrhythmias. The subcellular level at which drugs interfere in trafficking pathways is largely unknown. KIR2.1 inward rectifier channels, largely responsible for the cardiac inward rectifier current (IK 1), are degraded in lysosomes. Amiodarone and dronedarone are class III antiarrhythmics. Chronic use of amiodarone, and to a lesser extent dronedarone, causes serious adverse effects to several organs and tissue types, including the heart. Both drugs have been described to interfere in the late-endosome/lysosome system. Here we defined the potential interference in KIR2.1 backward trafficking by amiodarone and dronedarone. Both drugs inhibited IK 1 in isolated rabbit ventricular cardiomyocytes at supraclinical doses only. In HK-KWGF cells, both drugs dose- and time-dependently increased KIR2.1 expression (2.0 ± 0.2-fold with amiodarone: 10 μM, 24 hrs; 2.3 ± 0.3-fold with dronedarone: 5 μM, 24 hrs) and late-endosomal/lysosomal KIR2.1 accumulation. Increased KIR2.1 expression level was also observed in the presence of Nav1.5 co-expression. Augmented KIR2.1 protein levels and intracellular accumulation were also observed in COS-7, END-2, MES-1 and EPI-7 cells. Both drugs had no effect on Kv11.1 ion channel protein expression levels. Finally, amiodarone (73.3 ± 10.3% P < 0.05 at −120 mV, 5 μM) enhanced IKIR 2.1 upon 24-hrs treatment, whereas dronedarone tended to increase IKIR 2.1 and it did not reach significance (43.8 ± 5.5%, P = 0.26 at −120 mV; 2 μM). We conclude that chronic amiodarone, and potentially also dronedarone, treatment can result in enhanced IK 1 by inhibiting KIR2.1 degradation
Analysis of shared heritability in common disorders of the brain
ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background
Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages.
Methods
Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023.
Findings
Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia.
Interpretation
The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC