17 research outputs found

    Weak anion-exchange hypercrosslinked sorbent in on-line solid-phase extraction-liquid chromatography coupling to achieve automated determination with an effective clean-up

    Get PDF
    A mixed-mode polymeric sorbent was on-line coupled to liquid chromatography (LC) for the first time and applied it to the selective solid-phase extract a group of pharmaceuticals in complex environmental water samples. The mixed-mode polymeric sorbent is a high-specific surface area hypercrosslinked polymer resin (HXLPP) in the form of monodisperse microspheres further modified with 1,2-ethylenediamine (EDA) moieties. These properties allows its application as a weak anion-exchange (WAX) sorbent in the on-line solid-phase extraction (SPE) coupling. The on-line SPE-LC method developed using the HXLPP-WAX sorbent was successfully applied to percolate a large volume of ultrapure (500 ml), river (250 ml) and effluent sewage (100 ml) water samples. In all the cases, the HXLPP-WAX resin provided near total recoveries of the most acidic compounds studied and clean chromatograms. This is because the ion-exchange interactions enable a washing step to be added to the SPE protocol that removes the compounds with weak acidic, neutral and basic properties from the sample matrix

    Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water

    Get PDF
    Three new hypercrosslinked polymers with hydrophilic character arising from hydroxyl moieties in their skeletons have been prepared in microsphere format and applied to the off-line solid-phase extraction (SPE) of polar compounds from water samples. For sample volumes of 1000 ml, the recoveries of various polar pesticides, such as oxamyl, methomyl, selected phenolic compounds, as well as some pharmaceuticals, were close to 90%. The HXLPP-polar polymer with the best performance characteristics was applied to real samples. Its performance was also compared to commercially available sorbents, such as LiChrolut EN (hydrophobic, hypercrosslinked), Oasis HLB (hydrophilic, macroporous) and Isolute ENV+ (hydrophilic, hypercrosslinked); the new sorbent out-performed the commercially available sorbents. The polymer was applied successfully in off-line SPE of river water samples followed by liquid chromatography and ultraviolet detection, providing a good linear range and detection limits of 0.2 μg l-1 for the majority of the compounds, with the exception of oxamyl, methomyl, guaiacol and salicylic acid where the detection limit was 0.5 μg l-1

    Synthesis by precipitation polymerisation of molecularly imprinted polymer microspheres for the selective extraction of carbamazepine and oxcarbazepine from human urine

    No full text
    Two molecularly imprinted polymers (MIPs), in the physical form of well-defined polymer microspheres, were synthesised via precipitation polymerisation (PP) using an antiepileptic drug, carbamazepine (CBZ), as template molecule, methacrylic acid as functional monomer and either divinylbenzene 80 (DVB-80) or a mixture of DVB-80 and ethylene glycol dimethacrylate (EGDMA) as crosslinking agents. The MIP obtained using DVB-80 alone as crosslinking agent (MIP A) had a narrow particle size distribution (9.5 +/- 0.5 mu m) and a well-developed permanent pore structure (specific surface area in the dry state = 758 m(2) g(-1)), whereas when a mixture of DVB-80 and EGDMA (MIP B) were used as crosslinking agents, the polymer obtained had a broader particle size distribution (6.4 +/- 1.8 mu m) and a relatively low specific surface area (23 m(2) g(-1)). The molecular recognition character of both polymers was evaluated by means of LC and then a molecularly imprinted solid-phase extraction (MISPE) protocol; CBZ was recognised by both polymers, and useful cross-selectivity for oxcarbazepine (OCBZ), which is the main metabolite of CBZ, also observed. In a detailed bioanalytical study, MIP A was selected in preference to MIP B since MIP A enabled a high volume of sample to be extracted such that lower limits of detection were achievable using this polymer. High recoveries of CBZ and OCBZ were obtained in a MISPE protocol when 50 mL of human urine spiked at 0.2 mg L-1 were percolated through MIP A (90% and 83%, respectively)

    Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water

    No full text
    A new polymeric sorbent synthesised by exploiting molecular imprinting technology has been used to selectively extract naphthalene sulfonates (NSs) directly from aqueous samples. In the non-covalent molecular imprinting approach used to prepare this polymer, 1-naphthalene sulfonic acid (1-NS) and 4-vinylpyridine (4-VP) were used as a template molecule and functional monomer, respectively, and both dissolved in a mixture of methanol/water (4:1) as porogen together with the cross-linker ethylene glycol dimethacrylate. The new non-covalent molecularly imprinted polymer (MIP) prepared in aqueous environment was used as a sorbent in solid-phase extraction (SPE) to selectively extract a group of naphthalene mono- and disulfonates. When one litre of a standard aqueous solution, which contained a mixture of eight NSs, was percolated through the SPE cartridge, all the NSs were retained on the MIP because of the cross-reactivity of the polymer. Recoveries were higher than 80% for all the compounds even after a clean-up step with methanol (MeOH). The MIP was also used to analyse water from the Ebro river

    Monodisperse, hypercrosslinked polymer microspheres as tailor-made sorbents for highly efficient solid-phase extractions of polar pollutants from water samples

    No full text
    In this detailed analytical study, we have evaluated in-house synthesised polymeric solid-phase extraction (SPE) sorbents in the form of monodisperse, hypercrosslinked polymer microspheres with diameters in the low micrometre range (similar to 4 mu m). More specifically, their performance in the on-line SPE of a group of polar pollutants has been investigated thoroughly. The novel hypercrosslinked materials were compared with satisfactory results to commercial SPE sorbents with similar chemical and morphological properties, albeit that the commercial materials had higher particle sizes and broader particle size distributions. The on-line SPE method developed using these novel particles as packing material was applied successfully to ultrapure, mineral, tap and Ebre river water samples, with near total recoveries of all the analytes studied when 500 ml samples were percolated through the sorbents. Method validation with river water samples demonstrated good linearity, low detection limits as well as satisfactory precision in terms of repeatability and reproducibility, with values of relative standard deviation (%RSD) lower than 6.7 and 8.7%, respectively

    On-line solid-phase extraction with molecularly imprinted polymers to selectively extract substituted 4-chlorophenols and 4-nitrophenol from water

    No full text
    Three polymers have been synthesised using 4-chlorophenol (4-CP) as the template, following different protocols (non-covalent and semi-covalent) and using different functional co-monomers, 4-vinylpyridine (4-VP) and methacrylic acid (MAA). The polymers were evaluated to check their selectivity as molecularly imprinted polymers (MIPs) in solid-phase extraction (SPE) coupled on-line to liquid chromatography. The solid-phase extraction procedure using MIPs (MISPE), including the clean-up step to remove any interferences, was optimised. The 4-VP non-covalent polymer was the only one which showed a clear imprint effect. This MIP also showed cross-reactivity for the 4-chloro-substituted phenols and for 4-nitrophenol (4-NP) from a mixture containing the 11 priority EPA (Environmental Protection Agency) phenolic compounds and 4-chlorophenol. The MIP was applied to selectively extract the 4-chloro-substituted compounds and 4-NP from river water samples

    Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples

    No full text
    In this paper, we review the current state of the art in the use of molecularly imprinted polymers (MIPs) as selective materials in molecularly imprinted solid-phase extraction (MISPE). The application of these synthetic polymers as sorbents allows not only pre-concentration and cleaning of the sample but also selective extraction of the target analyte, which is important, particularly when the sample is complex and impurities can interfere with quantification. We therefore discuss the application of MISPE to compounds from complex matrices, such as environmental and biological samples

    Molecularly imprinted polymer with high-fidelity binding sites for the selective extraction of barbiturates from human urine

    No full text
    In this paper the authors describe the synthesis of a molecularly imprinted polymer (MIP) by pptn. polymn., with barbital as the template mol., and the application of the barbital MIP as a molecularly selective sorbent in the solid-phase extn. (SPE) of barbiturates from human urine samples. The MIP was synthesized by pptn. polymn. using 2,6-bis-acrylamidopyridine as the functional monomer and DVB-80 as the crosslinking agent. The spherical MIP particles produced were 4.2 μm in diam.; a non-imprinted control polymer (NIP) in bead form was 4.8 μm (mean ± std. deviation) in diam. The particles were packed into a solid-phase extn. cartridge and employed as a novel sorbent in a molecularly imprinted solid-phase extn. (MISPE) protocol. The MIP showed high selectivity for the template mol., barbital, a feature which can be ascribed to the high-fidelity binding sites present in the MIP which arose from the use of 2,6-bis-acrylamidopyridine as the functional monomer. However, the MIP also displayed useful cross-selectivity for other barbiturates besides barbital. For real samples, the MIP was applied for the extn. of four barbiturates from human urine. However, due to the high urea concn. in this sample which interfere the proper interaction of barbiturates onto the MIP, a tandem system using a com. available sorbent was developed

    Synthesis and application of an oxytetracycline imprinted polymer for the solid-phase extraction of tetracycline antibiotics

    No full text
    Two molecularly imprinted polymers (MIPs) were synthesised using tetracycline and oxytetracycline antibiotics as template molecules in non-covalent molecular imprinting procedures. After a chromatographic evaluation, the performance of the MIPs as selective SPE sorbents was evaluated. In this study, it was demonstrated that after a clean-up step to disrupt the non-specific interactions between the MIPs and the compounds retained on them, the polymers showed cross-reactivity for certain other tetracycline analytes. The feasibility of the MIP to selectively extract tetracycline antibiotics in pig kidney tissue extract was demonstrated with the oxytetracycline MIP which gave rise to the best MISPE results when it was applied. Good recoveries were obtained when oxytetracycline and tetracycline were selectively extracted from 25 ml of pig kidney tissue extract

    A new molecularly imprinted polymer for the selective extraction of naproxen from urine samples by solid-phase extraction

    No full text
    A non-covalent molecularly imprinted polymer (MIP) was synthesised using naproxen (a non-steroidal, anti-inflammatory drug (NSAID)) as a template molecule. The NIT was chromatographically evaluated to confirm the imprinting effect, and was then applied as a selective sorbent in solid-phase extraction (SPE) to selectively extract naproxen. After this study, the NIT was used to extract naproxen from urine samples; it was demonstrated that by applying a selective washing step with acetonitrile (ACN) the compounds in the sample that were structurally related to naproxen could be eliminated
    corecore