8 research outputs found

    Recurrence quantification analysis as a tool for the characterization of molecular dynamics simulations

    Full text link
    A molecular dynamics simulation of a Lennard-Jones fluid, and a trajectory of the B1 immunoglobulin G-binding domain of streptococcal protein G (B1-IgG) simulated in water are analyzed by recurrence quantification, which is noteworthy for its independence from stationarity constraints, as well as its ability to detect transients, and both linear and nonlinear state changes. The results demonstrate the sensitivity of the technique for the discrimination of phase sensitive dynamics. Physical interpretation of the recurrence measures is also discussed.Comment: 7 pages, 8 figures, revtex; revised for review for Phys. Rev. E (clarifications and expansion of discussion)-- addition of the 8 postscript figures previously omitted, but unchanged from version

    Dynamic Properties of the N-Terminal Swapped Dimer of Ribonuclease A

    No full text
    Bovine pancreatic ribonuclease (RNase A) forms two 3-dimensional domain-swapped dimers with different quaternary structures. One dimer is characterized by the swapping of the C-terminal region (C-Dimer) and presents a rather loose structure. The other dimer (N-Dimer) exhibits a very compact structure with exchange of the N-terminal helix. Here we report the results of a molecular dynamics/essential dynamics (MD/ED) study carried out on the N-Dimer. This investigation, which represents the first MD/ED analysis on a three-dimensional domain-swapped enzyme, provides information on the dynamic properties of the active site residues as well as on the global motions of the dimer subunits. In particular, the analysis of the flexibility of the active site residues agrees well with recent crystallographic and site-directed mutagenesis studies on monomeric RNase A, thus indicating that domain swapping does not affect the dynamics of the active sites. A slight but significant rearrangement of N-Dimer quaternary structure, favored by the formation of additional hydrogen bonds at subunit interface, has been observed during the MD simulation. The analysis of collective movements reveals that each subunit of the dimer retains the functional breathing motion observed for RNase A. Interestingly, the breathing motion of the two subunits is dynamically coupled, as they open and close in phase. These correlated motions indicate the presence of active site intercommunications in this dimer. On these bases, we propose a speculative mechanism that may explain negative cooperativity in systems preserving structural symmetry during the allosteric transitions

    Selective Excitation of Native Fluctuations during Thermal Unfolding Simulations: Horse Heart Cytochrome c as a Case Study

    Get PDF
    The effect of temperature on the activation of native fluctuation motions during molecular dynamics unfolding simulations of horse heart cytochrome c has been studied. Essential dynamics analysis has been used to analyze the preferred directions of motion along the unfolding trajectories obtained by high temperature simulations. The results of this study have evidenced a clear correlation between the directions of the deformation motions that occur in the first stage of the unfolding process and few specific essential motions characterizing the 300 K dynamics of the protein. In particular, one of those collective motions, involved in the fluctuation of a loop region, is specifically excited in the thermal denaturation process, becoming progressively dominant during the first 500 ps of the unfolding simulations. As further evidence, the essential dynamics sampling performed along this collective motion has shown a tendency of the protein to promptly unfold. According to these results, the mechanism of thermal induced denaturation process involves the selective excitation of one or few specific equilibrium collective motions

    Global and local motions in ribonuclease A: a molecular dynamics study. Biopolymers. 2002 Nov 15; 65(4):274–83. PMID: 12382288. Epub 2002/10/17. eng

    No full text
    Abstract: The understanding of protein dynamics is one of the major goals of structural biology. A direct link between protein dynamics and function has been provided by x-ray studies performed on ribonuclease A (RNase A) (B. F. Rasmussen et al., Nature, 1992, Vol. 357, pp. 423-424; L. Vitagliano et al., Proteins: Structure, Function, and Genetics, 2002, Vol. 46, pp. 97-10

    Selective excitation of native fluctuations during thermal unfolding simulations: horse heart cytochrome c as a case study

    No full text
    ABSTRACT The effect of temperature on the activation of native fluctuation motions during molecular dynamics unfolding simulations of horse heart cytochrome c has been studied. Essential dynamics analysis has been used to analyze the preferred directions of motion along the unfolding trajectories obtained by high temperature simulations. The results of this study have evidenced a clear correlation between the directions of the deformation motions that occur in the first stage of the unfolding process and few specific essential motions characterizing the 300 K dynamics of the protein. In particular, one of those collective motions, involved in the fluctuation of a loop region, is specifically excited in the thermal denaturation process, becoming progressively dominant during the first 500 ps of the unfolding simulations. As further evidence, the essential dynamics sampling performed along this collective motion has shown a tendency of the protein to promptly unfold. According to these results, the mechanism of thermal induced denaturation process involves the selective excitation of one or few specific equilibrium collective motions

    Recurrence analysis of hydration effects on nonlinear protein dynamics: multiplicative scaling and additive processes

    No full text
    The potential energy time series obtained from molecular dynamics simulations of the B1 domain of protein G and plastocyanin both in vacuo and in water were analyzed by means of recurrence quantification analysis. This methodology is robust for nonlinear, nonstationary processes, and demonstrated the existence of a flat recurrence spectrum occurring beyond a previously described scaling region of protein dynamics, as well as the existence of clustered modes of very long period (approximately 500 ps) elicited by the solvent. The number of these modes was approximately related to the number of structural domains of the studied proteins. Thus the methodology may be useful to distinguish processes intrinsic to protein folding dynamics from those which develop from hydration. (C) 2001 Elsevier Science B.V. All rights reserved

    Open Interface and Large Quaternary Structure Movements in 3D Domain Swapped Proteins: Insights from Molecular Dynamics Simulations of the C-Terminal Swapped Dimer of Ribonuclease A

    Get PDF
    Bovine pancreatic ribonuclease (RNase A) forms two three-dimensional (3D) domain swapped dimers. Crystallographic investigations have revealed that these dimers display completely different quaternary structures: one dimer (N-dimer), which presents the swapping of the N-terminal helix, is characterized by a compact structure, whereas the other (C-dimer), which is stabilized by the exchange of the C-terminal end, shows a rather loose assembly of the two subunits. The dynamic properties of monomeric RNase A and of the N-dimer have been extensively characterized. Here, we report a molecular dynamics investigation carried out on the C-dimer. This computational experiment indicates that the quaternary structure of the C-dimer undergoes large fluctuations. These motions do not perturb the proper folding of the two subunits, which retain the dynamic properties of RNase A and the N-dimer. Indeed, the individual subunits of the C-dimer display the breathing motion of the β-sheet structure, which is important for the enzymatic activity of pancreatic-like ribonucleases. In contrast to what has been observed for the N-dimer, the breathing motion of the two subunits of the C-dimer is not coupled. This finding suggests that the intersubunit communications in a 3D domain swapped dimer strongly rely on the extent of the interchain interface. Furthermore, the observation that the C-dimer is endowed with a high intrinsic flexibility holds interesting implications for the specific properties of 3D domain swapped dimers. Indeed, a survey of the quaternary structures of the other 3D domain swapped dimers shows that large variations are often observed when the structural determinations are conducted in different experimental conditions. The 3D domain swapping phenomenon coupled with the high flexibility of the quaternary structure may be relevant for protein-protein recognition, and in particular for the pathological aggregations
    corecore