84 research outputs found
Uniform saddlepoint approximations for ratios of quadratic forms
Ratios of quadratic forms in correlated normal variables which introduce
noncentrality into the quadratic forms are considered. The denominator is
assumed to be positive (with probability 1). Various serial correlation
estimates such as least-squares, Yule--Walker and Burg, as well as
Durbin--Watson statistics, provide important examples of such ratios. The
cumulative distribution function (c.d.f.) and density for such ratios admit
saddlepoint approximations. These approximations are shown to preserve
uniformity of relative error over the entire range of support. Furthermore,
explicit values for the limiting relative errors at the extreme edges of
support are derived.Comment: Published in at http://dx.doi.org/10.3150/07-BEJ6169 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Asymmetric multivariate normal mixture GARCH
An asymmetric multivariate generalization of the recently proposed class of normal mixture GARCH models is developed. Issues of parametrization and estimation are discussed. Conditions for covariance stationarity and the existence of the fourth moment are derived, and expressions for the dynamic correlation structure of the process are provided. In an application to stock market returns, it is shown that the disaggregation of the conditional (co)variance process generated by the model provides substantial intuition. Moreover, the model exhibits a strong performance in calculating outâofâsample ValueâatâRisk measures
Mixed normal conditional heteroskedasticity
Both unconditional mixed-normal distributions and GARCH models with fat-tailed conditional distributions have been employed for modeling financial return data. We consider a mixed-normal distribution coupled with a GARCH-type structure which allows for conditional variance in each of the components as well as dynamic feedback between the components. Special cases and relationships with previously proposed specifications are discussed and stationarity conditions are derived. An empirical application to NASDAQ-index data indicates the appropriateness of the model class and illustrates that the approach can generate a plausible disaggregation of the conditional variance process, in which the components' volatility dynamics have a clearly distinct behavior that is, for example, compatible with the well-known leverage effect. Klassifikation: C22, C51, G1
Modeling and predicting market risk with Laplace-Gaussian mixture distributions
While much of classical statistical analysis is based on Gaussian distributional assumptions, statistical modeling with the Laplace distribution has gained importance in many applied fields. This phenomenon is rooted in the fact that, like the Gaussian, the Laplace distribution has many attractive properties. This paper investigates two methods of combining them and their use in modeling and predicting financial risk. Based on 25 daily stock return series, the empirical results indicate that the new models offer a plausible description of the data. They are also shown to be competitive with, or superior to, use of the hyperbolic distribution, which has gained some popularity in asset-return modeling and, in fact, also nests the Gaussian and Laplace. Klassifikation: C16, C50 . March 2005
Multivariate normal mixture GARCH
We present a multivariate generalization of the mixed normal GARCH model proposed in Haas, Mittnik, and Paolella (2004a). Issues of parametrization and estimation are discussed. We derive conditions for covariance stationarity and the existence of the fourth moment, and provide expressions for the dynamic correlation structure of the process. These results are also applicable to the single-component multivariate GARCH(p, q) model and simplify the results existing in the literature. In an application to stock returns, we show that the disaggregation of the conditional (co)variance process generated by our model provides substantial intuition, and we highlight a number of findings with potential significance for portfolio selection and further financial applications, such as regime-dependent correlation structures and leverage effects. Klassifikation: C32, C51, G10, G11Die vorliegende Arbeit ist einer multivariaten Verallgemeinerung des sog. Normal Mixture GARCH Modells gewidmet, dessen univariate Variante von Haas, Mittnik und Paolella (2004a, siehe auch CFS Working Paper 2002/10) vorgeschlagen wurde. Dieses Modell unterscheidet sich von traditionellen GARCH-AnsĂ€tzen insbesondere dadurch, dass es eine AbhĂ€ngigkeit der Risikoentwicklung von - typischerweise unbeobachtbaren - MarktzustĂ€nden explizit in Rechnung stellt. Dies wird durch die Beobachtung motiviert, dass das weit verbreitete GARCH Modell in seiner Standardvariante auch dann keine adĂ€quate Beschreibung der Risikodynamik leistet, wenn die Normalverteilung durch flexiblere bedingte Verteilungen ersetzt wird. ZustandsabhĂ€ngige VolatilitĂ€tsprozesse können etwa durch die variierende Dominanz heterogener Marktteilnehmer oder durch wechselnde Marktstimmungen ökonomisch zu erklĂ€ren sein. Anwendungen des Normal Mixture GARCH Modells auf zahlreiche Aktien- und Wechselkurszeitreihen (siehe z.B. Alexander und Lazar, 2004, 2005; und Haas, Mittnik und Paolella, 2004a,b) haben gezeigt, dass es sich zur Modellierung und Prognose des VolatilitĂ€tsprozesses der Renditen solcher Aktiva hervorragend eignet. Indes beschrĂ€nken sich diese Analysen bisher auf die Untersuchung univariater Zeitreihen. Zahlreiche Probleme der Finanzwirtschaft erfordern jedoch zwingend eine multivariate Modellierung, mithin also eine Beschreibung der AbhĂ€ngigkeitsstruktur zwischen den Renditen verschiedener Wertpapiere. Insbesondere fĂŒr solche Analysen erweist sich der Mischungsansatz aber als besonders vielversprechend. So spielen etwa im Portfoliomanagement die Korrelationen zwischen einzelnen Wertpapierrenditen eine herausragende Rolle. Die StĂ€rke der Korrelationen ist von entscheidender Bedeutung dafĂŒr, in welchem AusmaĂ das Risiko eines effizienten Portfolios durch Diversifikation reduziert werden kann. Nun gibt es empirische Hinweise darauf, dass die Korrelationen etwa zwischen Aktien in Perioden, die durch starke Marktschwankungen und tendenziell fallende Kurse charakterisiert sind, stĂ€rker sind als in ruhigeren Perioden. Das bedeutet, dass die Vorteile der Diversifikation in genau jenen Perioden geringer sind, in denen ihr Nutzen am gröĂten wĂ€re. Modelle, die die Existenz unterschiedlicher Marktregime nicht berĂŒcksichtigen, werden daher dazu tendieren, die Korrelationen in den adversen MarktzustĂ€nden zu unterschĂ€tzen. Dies kann zu erheblichen FehleinschĂ€tzungen des tatsĂ€chlichen Risikos wĂ€hrend solcher Perioden fĂŒhren. Diese und weitere Implikationen des Mischungsansatzes im Kontext multivariater GARCH Modelle werden in der vorliegenden Arbeit diskutiert, und ihre Relevanz wird anhand einer empirischen Anwendung dokumentiert. Erörtert werden ferner Fragen der Parametrisierung und SchĂ€tzung des Modells, und einige relevante theoretische Eigenschaften werden hergeleitet
Accurate value-at-risk forecast with the (good) old normal-GARCH model
A resampling method based on the bootstrap and a bias-correction step is developed for improving the Value-at-Risk (VaR) forecasting ability of the normal-GARCH model. Compared to the use of more sophisticated GARCH models, the new method is fast, easy to implement, numerically reliable, and, except for having to choose a window length L for the bias-correction step, fully data driven. The results for several different financial asset returns over a long out-of-sample forecasting period, as well as use of simulated data, strongly support use of the new method, and the performance is not sensitive to the choice of L. Klassifizierung: C22, C53, C63, G12Die Normalverteilung ist, entgegen ihrer hohen Verbreitung in der empirischen Finanzanalyse, im allgemeinen nicht dazu geeignet, die Renditen von Finanzmarkt-Zeitreihen adĂ€quat zu beschreiben. Ein viel beobachtetes PhĂanomen ist insbesondere die ĂŒber die Zeit variierende VolatilitĂ€t der Renditen, die eine bedingte Modellierung der Renditen notwendig erscheinen lĂ€Ăt. Der wohl am weitesten verbreitete Ansatz um solche VolatilitĂ€tsschwankungen zu modellieren ist das GARCH-Modell. Doch auch bei BerĂŒcksichtigung der VolatilitĂatschwankungen, d.h. bei bedingter Modellierung der Renditen mit Hilfe eines GARCH-Modells, ist die Normalverteilung im allgemeinen nicht dazu geeignet, die Verteilung der GARCH-gefilterten Renditen ausreichend genau zu beschreiben. Insbesondere Value-at-Risk (VaR) Prognosen sind mit dem normal-GARCH Modell im allgemeinen verzerrt, da die Normalverteilung die Enden der Rendite-Verteilung nur unzureichend beschreibt. Mögliche Auswege scheinen die Erweiterung und Modifikation der GARCH Dynamik, sowie die Verwendung anderer Verteilungen. Dies fĂŒhrt jedoch im allgemeinen dazu, daĂ diese Modelle sowohl theoretisch, als auch praktisch schwerer zu beherrschen sind. In der vorliegenden Studie entwickeln wir eine auf dem Bootstrap basierende Methode mit einem Verzerrungs-Korrektur Schritt, um die VaR Prognoseeigenschaften des normal-GARCH Modells zu verbessern. Im Vergleich zur Verwendung von komplexeren GARCH Spezifikationen und/oder Verteilungsannahmen ist diese neue Methode schnell, einfach zu implementieren, numerisch zuverlĂ€ssig und (abgesehen von einer zu wĂ€hlenden FensterlĂ€nge L fĂŒr den Schritt zur Korrektur der VaR-Verzerrung) vollst ndig Daten getrieben. Die vorgeschlagene Methode wird in langen out-of-sample PrognosezeitrĂ€umen auf ihre VaR PrognosefĂ€higkeiten geprĂŒft. Sowohl fĂŒr verschiedene Finanzmarkt-Reihen, als auch fĂŒr simulierte Daten, erweist sich die neue Methode als sehr gut geeignet, die VaR Prognosen der normal-GARCH Modells entscheidend zu verbessern und liefert auch im Vergleich zu komplexeren Modellen sehr gute Ergebnisse
Accurate Value-at-Risk Forecast with the (good old) Normal-GARCH Model
A resampling method based on the bootstrap and a bias-correction step is developed for improving the Value-at-Risk (VaR) forecasting ability of the normal-GARCH model. Compared to the use of more sophisticated GARCH models, the new method is fast, easy to implement, numerically reliable, and, except for having to choose a window length L for the bias-correction step, fully data driven. The results for several different financial asset returns over a long out-of-sample forecasting period, as well as use of simulated data, strongly support use of the new method, and the performance is not sensitive to the choice of L.Bootstrap, GARCH, Value-at-Risk
Pareto Improving Social Security Reform when Financial Markets are Incomplete!?
While much of classical statistical analysis is based on Gaussian distributional assumptions, statistical modeling with the Laplace distribution has gained importance in many applied fields. This phenomenon is rooted in the fact that, like the Gaussian, the Laplace distribution has many attractive properties. This paper investigates two methods of combining them and their use in modeling and predicting financial risk. Based on 25 daily stock return series, the empirical results indicate that the new models offer a plausible description of the data. They are also shown to be competitive with, or superior to, use of the hyperbolic distribution, which has gained some popularity in asset-return modeling and, in fact, also nests the Gaussian and Laplace.GARCH, Hyperbolic Distribution, Kurtosis, Laplace Distribution, Mixture Distributions, Stock Market Returns
ARCHModels.jl: Estimating ARCH Models in Julia
This paper introduces ARCHModels.jl, a package for the Julia programming language that implements a number of univariate and multivariate autoregressive conditional heteroskedasticity models. This model class is the workhorse tool for modeling the conditional volatility of financial assets. The distinguishing feature of these models is that they model the latent volatility as a (deterministic) function of past returns and volatilities. This recursive structure results in loop-heavy code which, due to its just-in-time compiler, Julia is well-equipped to handle. As such, the entire package is written in Julia, without any binary dependencies. We benchmark the performance of ARCHModels.jl against popular implementations in MATLAB, R, and Python, and illustrate its use in a detailed case study
Risk Parity Portfolio Optimization under Heavy-Tailed Returns and Time-Varying Volatility
Risk parity portfolio optimization, using expected shortfall as the risk measure, is investigated when asset returns are fat-tailed and heteroscedastic. The conditional return distribution is modeled by an elliptical multivariate generalized hyperbolic distribution, allowing for fast parameter estimation, via an expectation-maximization algorithm and a semi-closed form of the risk contributions. The efficient computation of non-Gaussian risk parity weights sidesteps the need for numerical simulations or Cornish-Fisher-type approximations. Accounting for fat-tailed returns, the risk parity allocation is less sensitive to volatility shocks, thereby generating lower portfolio turnover, in particular during market turmoils such as the global financial crisis. Although risk parity portfolios are surprisingly robust to the misuse of the Gaussian distribution, a more realistic model for conditional returns and time-varying volatilies can improve risk-adjusted returns, reduces turnover during periods of market stress and enables the use of a holistic risk model for portfolio and risk management
- âŠ