21 research outputs found

    Is the whole really more than the sum of its parts? Estimates of average size and orientation are susceptible to object substitution masking

    Get PDF
    We have a remarkable ability to accurately estimate average featural information across groups of objects, such as their average size or orientation. It has been suggested that, unlike individual object processing, this process of feature averaging occurs automatically and relatively early in the course of perceptual processing, without the need for objects to be processed to the same extent as is required for individual object identification. Here, we probed the processing stages involved in feature averaging by examining whether feature averaging is resistant to object substitution masking (OSM). Participants estimated the average size (Experiment 1) or average orientation (Experiment 2) of groups of briefly presented objects. Masking a subset of the objects using OSM reduced the extent to which these objects contributed to estimates of both average size and average orientation. Contrary to previous findings, these results suggest that feature averaging benefits from late stages of processing, subsequent to the initial registration of featural information

    Effects of restricted basilar papillar lesions and hair cell regeneration on auditory forebrain frequency organization in adult European Starlings

    Get PDF
    The frequency organization of neurons in the forebrain Field L complex (FLC) of adult starlings was investigated to determine the effects of hair cell (HC) destruction in the basal portion of the basilar papilla (BP) and of subsequent HC regeneration. Conventional microelectrode mapping techniques were used in normal starlings and in lesioned starlings either 2 d or 6-10 weeks after aminoglycoside treatment. Histological examination of the BP and recordings of auditory brainstem evoked responses confirmed massive loss of HCs in the basal portion of the BP and hearing losses at frequencies >2 kHz in starlings tested 2 d after aminoglycoside treatment. In these birds, all neurons in the region of the FLC in which characteristic frequencies (CFs) normally increase from 2 to 6 kHz had CF in the range of 2-4 kHz. The significantly elevated thresholds of responses in this region of altered tonotopic organization indicated that they were the residue of prelesion responses and did not reflect CNS plasticity. In the long-term recovery birds, there was histological evidence of substantial HC regeneration. The tonotopic organization of the high-frequency region of the FLC did not differ from that in normal starlings, but the mean threshold at CF in this frequency range was intermediate between the values in the normal and lesioned short-recovery groups. The recovery of normal tonotopicity indicates considerable stability of the topography of neuronal connections in the avian auditory system, but the residual loss of sensitivity suggests deficiencies in high-frequency HC function

    Parietal disruption alters audiovisual binding in the sound-induced flash illusion

    Get PDF
    Selective attention and multisensory integration are fundamental to perception, but little is known about whether, or under what circumstances, these processes interact to shape conscious awareness. Here, we used transcranial magnetic stimulation (TMS) to investigate the causal role of attention-related brain networks in multisensory integration between visual and auditory stimuli in the sound-induced flash illusion. The flash illusion is a widely studied multisensory phenomenon in which a single flash of light is falsely perceived as multiple flashes in the presence of irrelevant sounds. We investigated the hypothesis that extrastriate regions involved in selective attention, specifically within the right parietal cortex, exert an influence on the multisensory integrative processes that cause the flash illusion. We found that disruption of the right angular gyrus, but not of the adjacent supramarginal gyrus or of a sensory control site, enhanced participants' veridical perception of the multisensory events, thereby reducing their susceptibility to the illusion. Our findings suggest that the same parietal networks that normally act to enhance perception of attended events also play a role in the binding of auditory and visual stimuli in the sound-induced flash illusion

    Visual attentional load influences plasticity in the human motor cortex

    Get PDF
    Neural plasticity plays a critical role in learning, memory, and recovery from injury to the nervous system. Although much is known about the physical and physiological determinants of plasticity, little is known about the influence of cognitive factors. In this study, we investigated whether selective attention plays a role in modifying changes in neural excitability reflecting long-term potentiation (LTP)like plasticity. We induced LTP-like effects in the hand area of the human motor cortex using transcranial magnetic stimulation (TMS). During the induction of plasticity, participants engaged in a visual detection task with either low or high attentional demands. Changes in neural excitability were assessed by measuring motor-evoked potentials in a small hand muscle before and after the TMS procedures. In separate experiments plasticity was induced either by paired associative stimulation (PAS) or intermittent theta-burst stimulation (iTBS). Because these procedures induce different forms of LTP-like effects, they allowed us to investigate the generality of any attentional influence on plasticity. In both experiments reliable changes in motor cortex excitability were evident under low-load conditions, but this effect was eliminated under high-attentional load. In a third experiment we investigated whether the attentional task was associated with ongoing changes in the excitability of motor cortex, but found no difference in evoked potentials across the levels of attentional load. Our findings indicate that in addition to their role in modifying sensory processing, mechanisms of attention can also be a potent modulator of cortical plasticity

    Visual spatial attention has opposite effects on bidirectional plasticity in the human motor cortex

    Get PDF
    Long-term potentiation (LTP) and long-term depression (LTD) are key mechanisms of synaptic plasticity that are thought to act in concert to shape neural connections. Here we investigated the influence of visual spatial attention on LTP-like and LTD-like plasticity in thehumanmotor cortex. Plasticity was induced using paired associative stimulation (PAS), which involves repeated pairing of peripheral nerve stimulation and transcranial magnetic stimulation to alter functional responses in the thumb area of the primary motor cortex. PAS-induced changes in cortical excitability were assessed using motor-evoked potentials. During plasticity induction, participants directed their attention to one of two visual stimulus streams located adjacent to each hand. When participants attended to visual stimuli located near the left thumb, which was targeted by PAS, LTP-like increases in excitability were significantly enhanced, and LTD-like decreases in excitability reduced, relative to when they attended instead to stimuli located near the right thumb. These differential effects on (bidirectional) LTP-like and LTD-like plasticity suggest that voluntary visual attention can exert an important influence on the functional organization of the motor cortex. Specifically, attention acts to both enhance the strengthening and suppress the weakening of neural connections representing events that fall within the focus of attention

    Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery

    Get PDF
    The Rowett Institute and SRUC are core funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government. The Roslin Institute forms part of the Royal (Dick) School of Veterinary Studies, University of Edinburgh. This project was supported by the Biotechnology and Biological Sciences Research Council (BBSRC; BB/N016742/1, BB/N01720X/1), including institute strategic programme and national capability awards to The Roslin Institute (BBSRC: BB/P013759/1, BB/P013732/1, BB/J004235/1, BB/J004243/1); and by the Scottish Government as part of the 2016–2021 commission.Peer reviewedPublisher PD

    Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions

    No full text
    To investigate subcortical contributions to cortical reorganization, the frequency organization of the ventral nucleus of the medial geniculate body (MGv) in six normal adult cats and in eight cats with restricted unilateral cochlear lesions was investigated using multiunit electrophysiological recording techniques. The tonotopic organization of MGv in the lesioned animals, with severe mid-to-high frequency hearing losses, was investigated 40-186 days following the lesioning procedure. Frequency maps were generated from neural responses to pure tone bursts presented separately to each ear under barbiturate anesthesia. Consideration of the frequency organization in normal animals, and of the apparently normal representation of the ipsilateral (unlesioned) cochlea in lesioned animals, allowed for a detailed specification of the extent of changes observed in MGv. In the lesioned animals it was found that, in the region of MGv in which mid-to-high frequencies are normally represented, there was an expanded representation of lesion-edge frequencies. Neuron clusters within these regions of enlarged representation that had new characteristic frequencies displayed response properties (latency, bandwidth) very similar to those in normal animals. Thresholds of these neurons were not consistent with the argument that the changes merely reflect the residue of prelesion responses, suggesting a dynamic process of reorganization. The tonotopic reorganization observed in MGv is similar to that seen in the primary auditory cortex and is more extensive than the reorganization found in the auditory midbrain, suggesting that the auditory thalamus plays an important role in cortical plasticity. J. Comp. Neurol. 459:355-367, 2003. © 2003 Wiley-Liss, Inc

    Plasticity in the adult central auditory system

    No full text
    The central auditory system retains into adulthood a remarkable capacity for plastic changes in the response characteristics of single neurons and the functional organization of groups of neurons. The most dramatic examples of this plasticity are provided by changes in frequency selectivity and organization as a consequence of either partial hearing loss or procedures that alter the significance of particular frequencies for the organism. Changes in temporal resolution are also seen as a consequence of altered experience. These forms of plasticity are likely to contribute to the improvements exhibited by cochlear implant users in the post-implantation period

    Intermanual transfer and bilateral cortical plasticity is maintained in older adults after skilled motor training with simple and complex tasks

    Get PDF
    Intermanual transfer refers to the phenomenon whereby unilateral motor training induces performance gains in both the trained limb and in the opposite, untrained limb. Evidence indicates that intermanual transfer is attenuated in older adults following training on a simple ballistic movement task, but not after training on a complex task. This study investigated whether differences in plasticity in bilateral motor cortices underlie these differential intermanual transfer effects in older adults. Twenty young (65 years) trained on a simple (repeated ballistic thumb abduction) and complex (sequential finger-thumb opposition) task in separate sessions. Behavioral performance was used to quantify intermanual transfer between the dominant (trained) and non-dominant (untrained) hands. The amplitude of motor-evoked potentials induced by single pulse transcranial magnetic stimulation was used to investigate excitability changes in bilateral motor cortices. Contrary to predictions, both age groups exhibited performance improvements in both hands after unilateral skilled motor training with simple and complex tasks. These performance gains were accompanied by bilateral increases in cortical excitability in both groups for the simple but not the complex task. The findings suggest that advancing age does not necessarily influence the capacity for intermanual transfer after training with the dominant hand
    corecore