132 research outputs found

    Statistical Mechanics and Visual Signal Processing

    Full text link
    The nervous system solves a wide variety of problems in signal processing. In many cases the performance of the nervous system is so good that it apporaches fundamental physical limits, such as the limits imposed by diffraction and photon shot noise in vision. In this paper we show how to use the language of statistical field theory to address and solve problems in signal processing, that is problems in which one must estimate some aspect of the environment from the data in an array of sensors. In the field theory formulation the optimal estimator can be written as an expectation value in an ensemble where the input data act as external field. Problems at low signal-to-noise ratio can be solved in perturbation theory, while high signal-to-noise ratios are treated with a saddle-point approximation. These ideas are illustrated in detail by an example of visual motion estimation which is chosen to model a problem solved by the fly's brain. In this problem the optimal estimator has a rich structure, adapting to various parameters of the environment such as the mean-square contrast and the correlation time of contrast fluctuations. This structure is in qualitative accord with existing measurements on motion sensitive neurons in the fly's brain, and we argue that the adaptive properties of the optimal estimator may help resolve conlficts among different interpretations of these data. Finally we propose some crucial direct tests of the adaptive behavior.Comment: 34pp, LaTeX, PUPT-143

    Correlation structure of extreme stock returns

    Full text link
    It is commonly believed that the correlations between stock returns increase in high volatility periods. We investigate how much of these correlations can be explained within a simple non-Gaussian one-factor description with time independent correlations. Using surrogate data with the true market return as the dominant factor, we show that most of these correlations, measured by a variety of different indicators, can be accounted for. In particular, this one-factor model can explain the level and asymmetry of empirical exceedance correlations. However, more subtle effects require an extension of the one factor model, where the variance and skewness of the residuals also depend on the market return.Comment: Substantial rewriting. Added exceedance correlations, removed some confusing material. To appear in Quantitative Financ
    • …
    corecore