12,873 research outputs found

    Polymer Expansions for Cycle LDPC Codes

    Full text link
    We prove that the Bethe expression for the conditional input-output entropy of cycle LDPC codes on binary symmetric channels above the MAP threshold is exact in the large block length limit. The analysis relies on methods from statistical physics. The finite size corrections to the Bethe expression are expressed through a polymer expansion which is controlled thanks to expander and counting arguments

    Are Athletes Different ? An Experimental Study Based on the Ultimatum Game

    Get PDF
    Sport, Athletes, Economic behavior, Experiments, Ultimatum game.

    Approaching the Rate-Distortion Limit with Spatial Coupling, Belief propagation and Decimation

    Get PDF
    We investigate an encoding scheme for lossy compression of a binary symmetric source based on simple spatially coupled Low-Density Generator-Matrix codes. The degree of the check nodes is regular and the one of code-bits is Poisson distributed with an average depending on the compression rate. The performance of a low complexity Belief Propagation Guided Decimation algorithm is excellent. The algorithmic rate-distortion curve approaches the optimal curve of the ensemble as the width of the coupling window grows. Moreover, as the check degree grows both curves approach the ultimate Shannon rate-distortion limit. The Belief Propagation Guided Decimation encoder is based on the posterior measure of a binary symmetric test-channel. This measure can be interpreted as a random Gibbs measure at a "temperature" directly related to the "noise level of the test-channel". We investigate the links between the algorithmic performance of the Belief Propagation Guided Decimation encoder and the phase diagram of this Gibbs measure. The phase diagram is investigated thanks to the cavity method of spin glass theory which predicts a number of phase transition thresholds. In particular the dynamical and condensation "phase transition temperatures" (equivalently test-channel noise thresholds) are computed. We observe that: (i) the dynamical temperature of the spatially coupled construction saturates towards the condensation temperature; (ii) for large degrees the condensation temperature approaches the temperature (i.e. noise level) related to the information theoretic Shannon test-channel noise parameter of rate-distortion theory. This provides heuristic insight into the excellent performance of the Belief Propagation Guided Decimation algorithm. The paper contains an introduction to the cavity method

    Sliding lubricated anisotropic rough surfaces

    Get PDF
    The object of this paper is to study the effects of lubricant film flow, pressurized and sheared between two parallel rough surfaces in sliding motion. The influence of microscopic surface roughness on lubricant film flow macroscopic behavior is described through five nondimensional parameters called flow factors. These macroscopic transport parameters are related to the local geometry of apertures and surfaces. Short- and long-range-correlated surface roughnesses display very different macroscopic behaviors when surfaces are close to contact. These behaviors are related to underlying surface roughness parameters such as the correlation length and the self-affine Hurst exponent. The problem is numerically studied, and results are compared to some analytical asymptotic results

    Consistent deformations of dual formulations of linearized gravity: A no-go result

    Get PDF
    The consistent, local, smooth deformations of the dual formulation of linearized gravity involving a tensor field in the exotic representation of the Lorentz group with Young symmetry type (D-3,1) (one column of length D-3 and one column of length 1) are systematically investigated. The rigidity of the Abelian gauge algebra is first established. We next prove a no-go theorem for interactions involving at most two derivatives of the fields.Comment: Reference added. Version to appear in Phys. Rev.

    Averaged Reynolds Equation for Flows between Rough Surfaces in Sliding Motion

    Get PDF
    The flow between rough surfaces in sliding motion with contacts between these surfaces, is analyzed through the volume averaging method. Assuming a Reynolds (lubrication) approximation at the roughness scale, an average flow model is obtained combining spatial and time average. Time average, which is often omitted in previous works, is specially discussed. It is shown that the effective transport coefficients, traditionally termed ‘flow factors’ in the lubrication literature, that appear in the average equations can be obtained from the solution to two closure problems. This allows for the numerical determination of flow factors on firmer bases and sheds light on some arguments to the literature. Moreover, fluid flows through fractures form an important subset of problems embodied in the present analysis, for which macroscopisation is given
    corecore