435 research outputs found

    Tracking Salmonella-Specific CD4 T Cells In Vivo Reveals a Local Mucosal Response to a Disseminated Infection

    Get PDF
    AbstractA novel adoptive transfer system was used to track the fate of naive Salmonella-specific CD4 T cells in vivo. These cells showed signs of activation in the Peyer's patches as early as 3 hr after oral infection. The activated CD4 T cells then produced IL-2 and proliferated in the T cell areas of these tissues before migrating into the B cell-rich follicles. In contrast, Salmonella-specific CD4 T cells were not activated in the spleen and very few of these cells migrated to the liver, despite the presence of bacteria in both organs. These results show that the T cell response to pathogenic Salmonella infection is localized to the gut-associated lymphoid tissue and does not extend efficiently to the major sites of late infection

    CD4+ T cells that enter the draining lymph nodes after antigen injection participate in the primary response and become central–memory cells

    Get PDF
    We explored the relationship between the time of naive CD4+ T cell exposure to antigen in the primary immune response and the quality of the memory cells produced. Naive CD4+ T cells that migrated into the skin-draining lymph nodes after subcutaneous antigen injection accounted for about half of the antigen-specific population present at the peak of clonal expansion. These late-arriving T cells divided less and more retained the central–memory marker CD62L than the T cells that resided in the draining lymph nodes at the time of antigen injection. The fewer cell divisions were related to competition with resident T cells that expanded earlier in the response and a reduction in the number of dendritic cells displaying peptide–major histocompatibility complex (MHC) II complexes at later times after antigen injection. The progeny of late-arriving T cells possessed the phenotype of central–memory cells, and proliferated more extensively during the secondary response than the progeny of the resident T cells. The results suggest that late arrival into lymph nodes and exposure to antigen-presenting cells displaying lower numbers of peptide–MHC II complexes in the presence of competing T cells ensures that some antigen-specific CD4+ T cells divide less in the primary response and become central–memory cells

    Preferential Accumulation of Antigen-specific Effector CD4 T Cells at an Antigen Injection Site Involves CD62E-dependent Migration but Not Local Proliferation

    Get PDF
    The migration of antigen-specific T cells to nonlymphoid tissues is thought to be important for the elimination of foreign antigens from the body. However, recent results showing the migration of activated T cells into many nonlymphoid tissues raised the possibility that antigen-specific T cells do not migrate preferentially to nonlymphoid tissues containing antigen. We addressed this question by tracking antigen-specific CD4 T cells in the whole body after a localized subcutaneous antigen injection. Antigen-specific CD4 T cells proliferated in the skin-draining lymph nodes and the cells that underwent the most cell divisions acquired the ability to bind to CD62P. As time passed, CD62P-binding antigen-specific CD4 T cells with interferon γ production potential accumulated preferentially at the site of antigen injection but only in recipients that expressed CD62E. Surprisingly, these T cells did not proliferate in the injection site despite showing evidence of more cell divisions than the T cells in the draining lymph nodes. The results suggest that the most divided effector CD4 T cells from the lymph nodes enter the site of antigen deposition via recognition of CD62E on blood vessels and are retained there in a nonproliferative state via recognition of peptide–major histocompatibility complex II molecules

    Temporal Expression of Bacterial Proteins Instructs Host CD4 T Cell Expansion and Th17 Development

    Get PDF
    Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS) effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo

    Visualization of the Genesis and Fate of Isotype-switched B Cells during a Primary Immune Response

    Get PDF
    The life history of isotype-switched B cells is unclear, in part, because of an inability to detect rare antigen-specific B cells at early times during the immune response. To address this issue, a small population of B cells carrying targeted antibody transgenes capable of class switching was monitored in immunized mice. After contacting helper T cells, the first switched B cells appeared in follicles rather than in the red pulp, as was expected. Later, some of the switched B cells transiently occupied the red pulp and marginal zone, whereas others persisted in germinal centers (GCs). Antigen-experienced IgM B cells were rarely found in GCs, indicating that these cells switched rapidly after entering GCs or did not persist in this environment

    Overall asthma control achieved with budesonide/formoterol maintenance and reliever therapy for patients on different treatment steps

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adjusting medication for uncontrolled asthma involves selecting one of several options from the same or a higher treatment step outlined in asthma guidelines. We examined the relative benefit of introducing budesonide/formoterol (BUD/FORM) maintenance and reliever therapy (Symbicort SMART<sup>® </sup>Turbuhaler<sup>®</sup>) in patients previously prescribed treatments from Global Initiative for Asthma (GINA) Steps 2, 3 or 4.</p> <p>Methods</p> <p>This is a <it>post hoc </it>analysis of the results of five large clinical trials (>12000 patients) comparing BUD/FORM maintenance and reliever therapy with other treatments categorised by treatment step at study entry. Both current clinical asthma control during the last week of treatment and exacerbations during the study were examined.</p> <p>Results</p> <p>At each GINA treatment step, the proportion of patients achieving target levels of current clinical control were similar or higher with BUD/FORM maintenance and reliever therapy compared with the same or a higher fixed maintenance dose of inhaled corticosteroid/long-acting β<sub>2</sub>-agonist (ICS/LABA) (plus short-acting β<sub>2</sub>-agonist [SABA] as reliever), and rates of exacerbations were lower at all treatment steps in BUD/FORM maintenance and reliever therapy versus same maintenance dose ICS/LABA (P < 0.01) and at treatment Step 4 versus higher maintenance dose ICS/LABA (P < 0.001). BUD/FORM maintenance and reliever therapy also achieved significantly higher rates of current clinical control and significantly lower exacerbation rates at most treatment steps compared with a higher maintenance dose ICS + SABA (Steps 2-4 for control and Steps 3 and 4 for exacerbations). With all treatments, the proportion of patients achieving current clinical control was lower with increasing treatment steps.</p> <p>Conclusions</p> <p>BUD/FORM maintenance and reliever therapy may be a preferable option for patients on Steps 2 to 4 of asthma guidelines requiring a more effective treatment and, compared with other fixed dose alternatives, is most effective in the higher treatment steps.</p

    Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection

    Get PDF
    Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection

    Myocardial Fibrosis and Cardiac Decompensation in Aortic Stenosis

    Get PDF
    OBJECTIVES: Cardiac magnetic resonance (CMR) was used to investigate the extracellular compartment and myocardial fibrosis in patients with aortic stenosis, as well as their association with other measures of left ventricular decompensation and mortality. BACKGROUND: Progressive myocardial fibrosis drives the transition from hypertrophy to heart failure in aortic stenosis. Diffuse fibrosis is associated with extracellular volume expansion that is detectable by T1 mapping, whereas late gadolinium enhancement (LGE) detects replacement fibrosis. METHODS: In a prospective observational cohort study, 203 subjects (166 with aortic stenosis [69 years; 69% male]; 37 healthy volunteers [68 years; 65% male]) underwent comprehensive phenotypic characterization with clinical imaging and biomarker evaluation. On CMR, we quantified the total extracellular volume of the myocardium indexed to body surface area (iECV). The iECV upper limit of normal from the control group (22.5 ml/m(2)) was used to define extracellular compartment expansion. Areas of replacement mid-wall LGE were also identified. All-cause mortality was determined during 2.9 ± 0.8 years of follow up. RESULTS: iECV demonstrated a good correlation with diffuse histological fibrosis on myocardial biopsies (r = 0.87; p < 0.001; n = 11) and was increased in patients with aortic stenosis (23.6 ± 7.2 ml/m(2) vs. 16.1 ± 3.2 ml/m(2) in control subjects; p < 0.001). iECV was used together with LGE to categorize patients with normal myocardium (iECV <22.5 ml/m(2); 51% of patients), extracellular expansion (iECV ≥22.5 ml/m(2); 22%), and replacement fibrosis (presence of mid-wall LGE, 27%). There was evidence of increasing hypertrophy, myocardial injury, diastolic dysfunction, and longitudinal systolic dysfunction consistent with progressive left ventricular decompensation (all p < 0.05) across these groups. Moreover, this categorization was of prognostic value with stepwise increases in unadjusted all-cause mortality (8 deaths/1,000 patient-years vs. 36 deaths/1,000 patient-years vs. 71 deaths/1,000 patient-years, respectively; p = 0.009). CONCLUSIONS: CMR detects ventricular decompensation in aortic stenosis through the identification of myocardial extracellular expansion and replacement fibrosis. This holds major promise in tracking myocardial health in valve disease and for optimizing the timing of valve replacement. (The Role of Myocardial Fibrosis in Patients With Aortic Stenosis; NCT01755936)
    corecore