206 research outputs found
Chemoenzymatische Synthese von Guerbet-Alkoholen
Biermann M. Chemoenzymatische Synthese von Guerbet-Alkoholen. Bielefeld: Universität Bielefeld; 2016
Cluster magnetic fields from large-scale-structure and galaxy-cluster shocks
The origin of the micro-Gauss magnetic fields in galaxy clusters is one of
the outstanding problem of modern cosmology. We have performed
three-dimensional particle-in-cell simulations of the nonrelativistic Weibel
instability in an electron-proton plasma, in conditions typical of cosmological
shocks. These simulations indicate that cluster fields could have been produced
by shocks propagating through the intergalactic medium during the formation of
large-scale structure or by shocks within the cluster. The strengths of the
shock-generated fields range from tens of nano-Gauss in the intercluster medium
to a few micro-Gauss inside galaxy clusters.Comment: 4 pages, 2 color figure
Biotechnology – A Tool to Transform Givaudan’s Fragrance Ingredients Palette
To support perfumers in their creation of olfactive signatures resulting in unique and instantly recognizable perfumes, there is a constant demand for the development of new odorant molecules and of novel processes for their production. Increasing the sustainability of both the molecules and the processes is a crucial activity at Givaudan. Biocatalysis has the potential to positively influence metrics applied at Givaudan that drive and measure our ambition to innovate responsibly, which is summarized in the FiveCarbon Path™. It targets an increased use of renewable carbon, carbon efficiency in synthesis, and the production of powerful and biodegradable odorant molecules while maximizing the use of upcycled carbon available from waste and side streams. This review illustrates with some examples how enzymes selected from the oxidoreductase and isomerase enzyme classes are applied at Givaudan for the preparation of odorant molecules both at laboratory and industrial scale
Evidence-Based Approaches to Anticoagulation in Reconstructive Microsurgery—A Systematic Literature Review
This systematic review addresses the crucial role of anticoagulation in microsurgical procedures, focusing on free flap reconstruction and replantation surgeries. The objective was to balance the prevention of thrombotic complications commonly leading to flap failure, with the risk of increased bleeding complications associated with anticoagulant use. A meticulous PubMed literature search following Evidence-Based-Practice principles yielded 79 relevant articles, including both clinical and animal studies. The full-texts were carefully reviewed and evaluated by the modified Coleman methodology score. Clinical studies revealed diverse perioperative regimens, primarily based on aspirin, heparin, and dextran. Meta-analyses demonstrated similar flap loss rates with heparin or aspirin. High doses of dalteparin or heparin, however, correlated with higher flap loss rates than low dose administration. Use of dextran is not recommended due to severe systemic complications. In animal studies, systemic heparin administration showed predominantly favorable results, while topical application and intraluminal irrigation consistently exhibited significant benefits in flap survival. The insights from this conducted systematic review serve as a foundational pillar towards the establishment of evidence-based guidelines for anticoagulation in microsurgery. An average Coleman score of 55 (maximum 103), indicating low overall study quality, however, emphasizes the need for large multi-institutional, randomized-clinical trials as the next vital step
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
Patient-reported burden of intensified surveillance and surgery in high-risk individuals under pancreatic cancer surveillance
In high-risk individuals participating in a pancreatic cancer surveillance program, worrisome features warrant for intensified surveillance or, occasionally, surgery. Our objectives were to determine the patient-reported burden of intensified surveillance and/or surgery, and to assess post-operative quality of life and opinion of surgery. Participants in our pancreatic cancer surveillance program completed questionnaires including the Cancer Worry Scale (CWS) and the Hospital Anxiety and Depression Scale (HADS). For individuals who underwent intensified surveillance, questionnaires before, during, and ≥ 3 weeks after were analyzed. In addition, subjects who underwent intensified surveillance in the past 3 years or underwent surgery at any time, were invited for an interview, that included the Short-Form 12 (SF-12). A total of 31 high-risk individuals were studied. During the intensified surveillance period, median CWS scores were higher (14, IQR 7), as compared to before (12, IQR 9, P = 0.007) and after (11, IQR 7, P = 0.014), but eventually returned back to baseline (P = 0.823). Median HADS scores were low: 5 (IQR 6) for anxiety and 3 (IQR 5) for depression, and they were unaff
- …