430 research outputs found

    The metal and dust yields of the first massive stars

    Get PDF
    We quantify the role of Population (Pop) III core-collapse supernovae (SNe) as the first cosmic dust polluters. Starting from a homogeneous set of stellar progenitors with masses in the range [13 - 80] Msun, we find that the mass and composition of newly formed dust depend on the mixing efficiency of the ejecta and the degree of fallback experienced during the explosion. For standard Pop III SNe, whose explosions are calibrated to reproduce the average elemental abundances of Galactic halo stars with [Fe/H] < -2.5, between 0.18 and 3.1 Msun (0.39 - 1.76 Msun) of dust can form in uniformly mixed (unmixed) ejecta, and the dominant grain species are silicates. We also investigate dust formation in the ejecta of faint Pop III SN, where the ejecta experience a strong fallback. By examining a set of models, tailored to minimize the scatter with the abundances of carbon-enhanced Galactic halo stars with [Fe/H ] < -4, we find that amorphous carbon is the only grain species that forms, with masses in the range 2.7 10^{-3} - 0.27 Msun (7.5 10^{-4} - 0.11 Msun) for uniformly mixed (unmixed) ejecta models. Finally, for all the models we estimate the amount and composition of dust that survives the passage of the reverse shock, and find that, depending on circumstellar medium densities, between 3 and 50% (10 - 80%) of dust produced by standard (faint) Pop III SNe can contribute to early dust enrichment.Comment: Accepted by MNRAS, 22 pages, 12 figures, 12 table

    Environmental sustainability of orthopedic devices produced with powder bed fusion

    Get PDF
    Additive manufacturing consists in melting metallic powders to produce objects from 3D data, layer upon layer. Its industrial applications range from automotive, biomedical (e.g., prosthetic implants for dentistry and orthopedics), aeronautics and others. This study uses life cycle assessment to evaluate the possible improvement in environmental performance of laser-based powder bed fusion additive manufacturing systems on prosthetic device production. Environmental impacts due to manufacturing, use, and end of life of the designed solution were assessed. In addition, two powder production technologies, gas atomization (GA) and plasma atomization (PA), were compared in order to establish the most sustainable one. Production via traditional subtractive technologies and the additive manufacturing production were also compared. 3D building was found to have a significant environmental advantage compared to the traditional technology. The powder production process considerably influences on a damage point of view the additive manufacturing process; however, its impact can be mitigated if GA powders are employed

    Evolution of dwarf galaxies hosting GW150914-like events

    Get PDF
    Here we present a detailed analysis of the properties and evolution of different dwarf galaxies, candidates to host the coalescence of black hole binary systems generating GW150914-like events. By adopting a novel theoretical framework coupling the binary population synthesis code SEBA with the Galaxy formationmodel GAMESH, we can investigate the detailed evolution of these objects in awell-resolved cosmological volume of 4 cMpc, having aMilkyWay (MW)- like galaxy forming at its centre. We identify three classes of interesting candidate galaxies: MW progenitors, dwarf satellites, and dwarf galaxies evolving in isolation. We find that (i) despite differences in individual histories and specific environments the candidates reduce to only nine representative galaxies; (ii) among them, 3c44 per cent merge into the MW halo progenitors by the redshift of the expected signal, while the remaining dwarfs are found as isolated or as satellites of the MW and their evolution is strongly shaped by both peculiar dynamical history and environmental feedback; (iii) a stringent condition for the environments where GW150914-like binaries can form comes from a combination of the accretion history of their dark matter haloes and the radiative feedback in the high-redshift universe; and (iv) by comparing with the observed catalogues from the DGS and ALLSMOG surveys we find two observed dwarfs respecting the properties predicted by our model. We finally note how the present analysis opens the possibility to build future strategies for host galaxy identification

    Perturbative approach to the structure of rapidly rotating neutron stars

    Full text link
    We construct models of rotating stars using the perturbative approach introduced by J. Hartle in 1967, and a set of equations of state proposed to model hadronic interactions in the inner core of neutron stars. We integrate the equations of stellar structure to third order in the angular velocity and show, comparing our results to those obtained with fully non linear codes, to what extent third order corrections are needed to accurately reproduce the moment of inertia of a star which rotates at rates comparable to that of the fastest isolated pulsars.Comment: 17 pages, 5 figures, minor changes to match version accepted by Phys. Rev.

    Supernova dust yields: the role of metallicity, rotation, and fallback

    Get PDF
    Supernovae (SNe) are considered to have a major role in dust enrichment of high redshift galaxies and, due to the short lifetimes of interstellar grains, in dust replenishment of local galaxies. Here we explore how SN dust yields depend on the mass, metallicity, and rotation rate of the progenitor stars, and on the properties of the explosion. To this aim, assuming uniform mixing inside the ejecta, we quantify the dust mass produced by a sample of SN models with progenitor masses 13 MM120 M13~M_{\odot} \leq M \leq 120~M_{\odot}, metallicity 3[Fe/H]0\rm -3 \leq [Fe/H] \leq 0, rotation rate vrot=0\rm v_{\rm rot} = 0 and 300300~km/s, that explode with a fixed energy of 1.2×10511.2 \times 10^{51}~erg (FE models) or with explosion properties calibrated to reproduce the 56Ni\rm ^{56}Ni - MM relation inferred from SN observations (CE models). We find that rotation favours more efficient dust production, particularly for more massive, low metallicity stars, but that metallicity and explosion properties have the largest effects on the dust mass and its composition. In FE models, SNe with M2025 MM \leq 20 - 25 ~M_{\odot} are more efficient at forming dust: between 0.1 and 1 MM_\odot is formed in a single explosion, with a composition dominated by silicates, carbon and magnetite grains when [Fe/H]=0\rm [Fe/H] = 0, and by carbon and magnetite grains when [Fe/H]<0\rm [Fe/H] < 0. In CE models, the ejecta are massive and metal-rich and dust production is more efficient. The dust mass increases with MM and it is dominated by silicates, at all [Fe/H].Comment: MNRAS, in pres

    FFF-based high-throughput sequence shortlisting to support the development of aptamer-based analytical strategies

    Get PDF
    Aptamers are biomimetic receptors that are increasingly exploited for the development of optical and electrochemical aptasensors. They are selected in vitro by the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure, but although they are promising recognition elements, for their reliable applicability for analytical purposes, one cannot ignore sample components that cause matrix effects. This particularly applies when different SELEX-selected aptamers and related truncated sequences are available for a certain target, and the choice of the aptamer should be driven by the specific downstream application. In this context, the present work aimed at investigating the potentialities of asymmetrical flow field-flow fractionation (AF4) with UV detection for the development of a screening method of a large number of anti-lysozyme aptamers towards lysozyme, including randomized sequences and an interfering agent (serum albumin). The possibility to work in native conditions and selectively monitor the evolution of untagged aptamer signal as a result of aptamer-protein binding makes the devised method effective as a strategy for shortlisting the most promising aptamers both in terms of affinity and in terms of selectivity, to support subsequent development of aptamer-based analytical devices. Graphical abstract: [Figure not available: see fulltext.
    corecore