17 research outputs found
Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos
Future liquid-argon DarkSide-20k and Argo detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of ∼50 t and ∼360 t for DarkSide-20k and Argo respectively. Thanks to the low-energy threshold of ∼0.5 keVnr achievable by exploiting the ionization channel, DarkSide-20k and Argo have the potential to discover supernova bursts throughout our galaxy and up to the Small Magellanic Cloud, respectively, assuming a 11-M⊙ progenitor star. We report also on the sensitivity to the neutronization burst, whose electron neutrino flux is suppressed by oscillations when detected via charged current and elastic scattering. Finally, the accuracies in the reconstruction of the average and total neutrino energy in the different phases of the supernova burst, as well as its time profile, are also discussed, taking into account the expected background and the detector response
Separating Ar39 from Ar40 by cryogenic distillation with Aria for dark matter searches
Aria is a plant hosting a 350m cryogenic isotopic distillation column, the tallest ever built, which is being installed in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. It was designed to reduce the isotopic abundance of 39Ar in argon extracted from underground sources, called Underground Argon (UAr), which is used for dark-matter searches. Indeed, 39Ar is a -emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors. In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of the isotopic cryogenic distillation of nitrogen with a prototype plant
Separating from by cryogenic distillation with Aria for dark-matter searches
Aria is a plant hosting a 350 m cryogenic isotopic distillation column, the tallest ever built, which is being installed in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. It was designed to reduce the isotopic abundance of 39Ar in argon extracted from underground sources, called Underground Argon (UAr), which is used for dark-matter searches. Indeed, 39Ar is a beta -emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors. In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of the isotopic cryogenic distillation of nitrogen with a prototype plant
Recommended from our members
Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos
none276Future liquid-argon DarkSide-20k and Argo detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of ∼50 t and ∼360 t for DarkSide-20k and Argo respectively. Thanks to the low-energy threshold of ∼0.5 keVnr achievable by exploiting the ionization channel, DarkSide-20k and Argo have the potential to discover supernova bursts throughout our galaxy and up to the Small Magellanic Cloud, respectively, assuming a 11-M⊙ progenitor star. We report also on the sensitivity to the neutronization burst, whose electron neutrino flux is suppressed by oscillations when detected via charged current and elastic scattering. Finally, the accuracies in the reconstruction of the average and total neutrino energy in the different phases of the supernova burst, as well as its time profile, are also discussed, taking into account the expected background and the detector response.noneAgnes P.; Albergo S.; Albuquerque I.F.M.; Alexander T.; Alici A.; Alton A.K.; Amaudruz P.; Arcelli S.; Ave M.; Avetissov I.C.; Avetisov R.I.; Azzolini O.; Back H.O.; Balmforth Z.; Barbarian V.; Barrado Olmedo A.; Barrillon P.; Basco A.; Batignani G.; Bondar A.; Bonivento W.M.; Borisova E.; Bottino B.; Boulay M.G.; Buccino G.; Bussino S.; Busto J.; Buzulutskov A.; Cadeddu M.; Cadoni M.; Caminata A.; Canci N.; Cappello G.; Caravati M.; Cardenas-Montes M.; Carlini M.; Carnesecchi F.; Castello P.; Catalanotti S.; Cataudella V.; Cavalcante P.; Cavuoti S.; Cebrian S.; Cela Ruiz J.M.; Celano B.; Chashin S.; Chepurnov A.; Chyhyrynets E.; Cicalo C.; Cifarelli L.; Cintas D.; Coccetti F.; Cocco V.; Colocci M.; E. Conde Vilda; Consiglio L.; Copello S.; Corning J.; Covone G.; Czudak P.; D'Auria S.; Da Rocha Rolo M.D.; Dadoun O.; Daniel M.; Davini S.; De Candia A.; De Cecco S.; De Falco A.; De Filippis G.; De Gruttola D.; De Guido G.; De Rosa G.; Della Valle M.; Dellacasa G.; De Pasquale S.; Derbin A.V.; Devoto A.; Di Noto L.; Dionisi C.; Di Stefano P.; Dolganov G.; Dordei F.; Doria L.; Downing M.; Erjavec T.; Fernandez Diaz M.; Fiorillo G.; Franceschi A.; Franco D.; Frolov E.; Funicello N.; Gabriele F.; Galbiati C.; Garbini M.; Garcia Abia P.; Gendotti A.; Ghiano C.; Giampaolo R.A.; Giganti C.; Giorgi M.A.; Giovanetti G.K.; Goicoechea Casanueva V.; Gola A.; Graciani Diaz R.; Grigoriev G.Y.; Grobov A.; Gromov M.; Guan M.; Guerzoni M.; Gulino M.; Guo C.; Hackett B.R.; Hallin A.; Haranczyk M.; Hill S.; Horikawa S.; Hubaut F.; Hugues T.; Hungerford E.V.; Ianni A.; Ippolito V.; James C.C.; Jillings C.; Kachru P.; Kemp A.A.; Kendziora C.L.; Keppel G.; Khomyakov A.V.; Kim S.; Kish A.; Kochanek I.; Kondo K.; Korga G.; Kubankin A.; Kugathasan R.; Kuss M.; Kuzniak M.; La Commara M.; Lai M.; Langrock S.; Leyton M.; Li X.; Lidey L.; Lissia M.; Longo G.; Machulin I.N.; Mapelli L.; Marasciulli A.; Margotti A.; Mari S.M.; Maricic J.; Martinez M.; Martinez Rojas A.D.; Martoff C.J.; Masoni A.; Mazzi A.; McDonald A.B.; Mclaughlin J.; Messina A.; Meyers P.D.; Miletic T.; Milincic R.; Moggi A.; Moharana A.; Moioli S.; Monroe J.; Morisi S.; Morrocchi M.; Mozhevitina E.N.; Mroz T.; Muratova V.N.; Muscas C.; Musenich L.; Musico P.; Nania R.; Napolitano T.; Navrer Agasson A.; Nessi M.; Nikulin I.; Nowak J.; Oleinik A.; Oleynikov V.; Pagani L.; Pallavicini M.; Pandola L.; Pantic E.; Paoloni E.; Paternoster G.; Pegoraro P.A.; Pelczar K.; Pellegrini L.A.; Pellegrino C.; Perotti F.; Pesudo V.; Picciau E.; Pietropaolo F.; Pira C.; Pocar A.; Poehlmann D.M.; Pordes S.; Poudel S.S.; Pralavorio P.; Price D.; Raffaelli F.; Ragusa F.; Ramirez A.; Razeti M.; Razeto A.; Renshaw A.L.; Rescia S.; Rescigno M.; Resnati F.; Retiere F.; Rignanese L.P.; Ripoli C.; Rivetti A.; Rode J.; Romero L.; Rossi M.; Rubbia A.; Salatino P.; Samoylov O.; Sanchez Garcia E.; Sandford E.; Sanfilippo S.; Santone D.; Santorelli R.; Savarese C.; Scapparone E.; Schlitzer B.; Scioli G.; Semenov D.A.; Shaw B.; Shchagin A.; Sheshukov A.; Simeone M.; Skensved P.; Skorokhvatov M.D.; Smirnov O.; Smith B.; Sokolov A.; Steri A.; Stracka S.; Strickland V.; Stringer M.; Sulis S.; Suvorov Y.; Szelc A.M.; Tartaglia R.; Testera G.; Thorpe T.N.; Tonazzo A.; Torres-Lara S.; Tricomi A.; Unzhakov E.V.; Usai G.; Vallivilayil John T.; Viant T.; Viel S.; Vishneva A.; Vogelaar R.B.; Wada M.; Wang H.; Wang Y.; Westerdale S.; Wheadon R.J.; Williams L.; Wojcik M.M.; Wojcik M.; Xiao X.; Yang C.; Ye Z.; Zani A.; Zichichi A.; Zuzel G.; Zykova M.P.Agnes, P.; Albergo, S.; Albuquerque, I. F. M.; Alexander, T.; Alici, A.; Alton, A. K.; Amaudruz, P.; Arcelli, S.; Ave, M.; Avetissov, I. C.; Avetisov, R. I.; Azzolini, O.; Back, H. O.; Balmforth, Z.; Barbarian, V.; Barrado Olmedo, A.; Barrillon, P.; Basco, A.; Batignani, G.; Bondar, A.; Bonivento, W. M.; Borisova, E.; Bottino, B.; Boulay, M. G.; Buccino, G.; Bussino, S.; Busto, J.; Buzulutskov, A.; Cadeddu, M.; Cadoni, M.; Caminata, A.; Canci, N.; Cappello, G.; Caravati, M.; Cardenas-Montes, M.; Carlini, M.; Carnesecchi, F.; Castello, P.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Cavuoti, S.; Cebrian, S.; Cela Ruiz, J. M.; Celano, B.; Chashin, S.; Chepurnov, A.; Chyhyrynets, E.; Cicalo, C.; Cifarelli, L.; Cintas, D.; Coccetti, F.; Cocco, V.; Colocci, M.; E., Conde Vilda; Consiglio, L.; Copello, S.; Corning, J.; Covone, G.; Czudak, P.; D'Auria, S.; Da Rocha Rolo, M. D.; Dadoun, O.; Daniel, M.; Davini, S.; De Candia, A.; De Cecco, S.; De Falco, A.; De Filippis, G.; De Gruttola, D.; De Guido, G.; De Rosa, G.; Della Valle, M.; Dellacasa, G.; De Pasquale, S.; Derbin, A. V.; Devoto, A.; Di Noto, L.; Dionisi, C.; Di Stefano, P.; Dolganov, G.; Dordei, F.; Doria, L.; Downing, M.; Erjavec, T.; Fernandez Diaz, M.; Fiorillo, G.; Franceschi, A.; Franco, D.; Frolov, E.; Funicello, N.; Gabriele, F.; Galbiati, C.; Garbini, M.; Garcia Abia, P.; Gendotti, A.; Ghiano, C.; Giampaolo, R. A.; Giganti, C.; Giorgi, M. A.; Giovanetti, G. K.; Goicoechea Casanueva, V.; Gola, A.; Graciani Diaz, R.; Grigoriev, G. Y.; Grobov, A.; Gromov, M.; Guan, M.; Guerzoni, M.; Gulino, M.; Guo, C.; Hackett, B. R.; Hallin, A.; Haranczyk, M.; Hill, S.; Horikawa, S.; Hubaut, F.; Hugues, T.; Hungerford, E. V.; Ianni, A.; Ippolito, V.; James, C. C.; Jillings, C.; Kachru, P.; Kemp, A. A.; Kendziora, C. L.; Keppel, G.; Khomyakov, A. V.; Kim, S.; Kish, A.; Kochanek, I.; Kondo, K.; Korga, G.; Kubankin, A.; Kugathasan, R.; Kuss, M.; Kuzniak, M.; La Commara, M.; Lai, M.; Langrock, S.; Leyton, M.; Li, X.; Lidey, L.; Lissia, M.; Longo, G.; Machulin, I. N.; Mapelli, L.; Marasciulli, A.; Margotti, A.; Mari, S. M.; Maricic, J.; Martinez, M.; Martinez Rojas, A. D.; Martoff, C. J.; Masoni, A.; Mazzi, A.; Mcdonald, A. B.; Mclaughlin, J.; Messina, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Moggi, A.; Moharana, A.; Moioli, S.; Monroe, J.; Morisi, S.; Morrocchi, M.; Mozhevitina, E. N.; Mroz, T.; Muratova, V. N.; Muscas, C.; Musenich, L.; Musico, P.; Nania, R.; Napolitano, T.; Navrer Agasson, A.; Nessi, M.; Nikulin, I.; Nowak, J.; Oleinik, A.; Oleynikov, V.; Pagani, L.; Pallavicini, M.; Pandola, L.; Pantic, E.; Paoloni, E.; Paternoster, G.; Pegoraro, P. A.; Pelczar, K.; Pellegrini, L. A.; Pellegrino, C.; Perotti, F.; Pesudo, V.; Picciau, E.; Pietropaolo, F.; Pira, C.; Pocar, A.; Poehlmann, D. M.; Pordes, S.; Poudel, S. S.; Pralavorio, P.; Price, D.; Raffaelli, F.; Ragusa, F.; Ramirez, A.; Razeti, M.; Razeto, A.; Renshaw, A. L.; Rescia, S.; Rescigno, M.; Resnati, F.; Retiere, F.; Rignanese, L. P.; Ripoli, C.; Rivetti, A.; Rode, J.; Romero, L.; Rossi, M.; Rubbia, A.; Salatino, P.; Samoylov, O.; Sanchez Garcia, E.; Sandford, E.; Sanfilippo, S.; Santone, D.; Santorelli, R.; Savarese, C.; Scapparone, E.; Schlitzer, B.; Scioli, G.; Semenov, D. A.; Shaw, B.; Shchagin, A.; Sheshukov, A.; Simeone, M.; Skensved, P.; Skorokhvatov, M. D.; Smirnov, O.; Smith, B.; Sokolov, A.; Steri, A.; Stracka, S.; Strickland, V.; Stringer, M.; Sulis, S.; Suvorov, Y.; Szelc, A. M.; Tartaglia, R.; Testera, G.; Thorpe, T. N.; Tonazzo, A.; Torres-Lara, S.; Tricomi, A.; Unzhakov, E. V.; Usai, G.; Vallivilayil John, T.; Viant, T.; Viel, S.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Wang, H.; Wang, Y.; Westerdale, S.; Wheadon, R. J.; Williams, L.; Wojcik, M. M.; Wojcik, M.; Xiao, X.; Yang, C.; Ye, Z.; Zani, A.; Zichichi, A.; Zuzel, G.; Zykova, M. P
Benchmarking the design of the cryogenics system for the underground argon in DarkSide-20k
International audienceDarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment's lifetime of >10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of >8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser's working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within (0.1-0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit's flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities
Benchmarking the design of the cryogenics system for the underground argon in DarkSide-20k
International audienceDarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment's lifetime of >10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of >8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser's working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within (0.1-0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit's flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities
Benchmarking the design of the cryogenics system for the underground argon in DarkSide-20k
International audienceDarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment's lifetime of >10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of >8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser's working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within (0.1-0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit's flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities
Benchmarking the design of the cryogenics system for the underground argon in DarkSide-20k
International audienceDarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment's lifetime of >10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of >8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser's working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within (0.1-0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit's flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities
Separating 39Ar from 40Ar by cryogenic distillation with Aria for dark-matter searches
Aria is a plant hosting a 350m cryogenic isotopic distillation column, the tallest ever built, which is being installed in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. It was designed to reduce the isotopic abundance of 39Ar in argon extracted from underground sources, called Underground Argon (UAr), which is used for dark-matter searches. Indeed, 39Ar is a \u3b2-emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors. In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of the isotopic cryogenic distillation of nitrogen with a prototype plant
DarkSide-20k sensitivity to light dark matter particles
International audienceThe dual-phase liquid argon time projection chamber is presently one of the leading technologies to search for dark matter particles with masses below 10 GeV/c. This was demonstrated by the DarkSide-50 experiment with approximately 50 kg of low-radioactivity liquid argon as target material. The next generation experiment DarkSide-20k, currently under construction, will use 1,000 times more argon and is expected to start operation in 2027. Based on the DarkSide-50 experience, here we assess the DarkSide-20k sensitivity to models predicting light dark matter particles, including Weakly Interacting Massive Particles (WIMPs) and sub-GeV/c particles interacting with electrons in argon atoms. With one year of data, a sensitivity improvement to dark matter interaction cross-sections by at least one order of magnitude with respect to DarkSide-50 is expected for all these models. A sensitivity to WIMP--nucleon interaction cross-sections below cm is achievable for WIMP masses above 800 MeV/c. With 10 years exposure, the neutrino fog can be reached for WIMP masses around 5 GeV/c