140 research outputs found

    Cosmochemical Derivation of the Composition of Chondrite Material.

    Get PDF
    第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月17日(木) 国立国語研究所 2階講

    Ordinary Chondrites and the Origin of the Earth

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月29日(木)、30日(金) 国立国語研究所 2階講

    Ideas and perspectives: Development of nascent autotrophic carbon fixation systems in various redox conditions of the fluid degassing on early Earth

    Get PDF
    The origin and development of the primary autotrophic metabolism on early Earth were influenced by the two main regimes of degassing of the Earth – reducing (predominance CH4) and oxidative (CO2). Among the existing theories of the autotrophic origin of life in hydrothermal environments, CO2 is usually considered to be the carbon source for nascent autotrophic metabolism. However, the ancestral carbon used in metabolism may have been derived from CH4 if the outflow of magma fluid to the surface of the Earth consisted mainly of methane. In such an environment, the primary autotrophic metabolic systems had to be methanotrophic. Due to the absence of molecular oxygen in the Archean conditions, this metabolism would have been anaerobic; i.e., oxidation of methane must be realized by inorganic high-potential electron acceptors. In light of the primacy and prevalence of CH4-dependent metabolism in hydrothermal systems of the ancient Earth, we propose a model of carbon fixation where the methane is fixed or transformed in a sequence of reactions in an autocatalytic methane–fumarate cycle. Nitrogen oxides are thermodynamically the most favorable among possible oxidants of methane; however, even the activity of oxygen created by mineral buffers of iron in hydrothermal conditions is sufficient for methanotrophic acetogenesis. The hydrothermal system model is considered in the form of a phase diagram, which demonstrates the area of redox and P and T conditions favorable for the development of the primary methanotrophic metabolism.</p
    corecore