47 research outputs found

    Métodos no destructivos para la determinación de firmeza. Sensores de Aceleración. Impactadores.

    Get PDF
    Impact techniques can be used to evaluate firmness on fruit. Chen and Ruiz-Altisent developed and used a 50,4 g impactor with a 19 mm diameter spherical tip, dropping from different heights onto the fruit. Another impactor device is a semispherical impacting tip attached to the end of a pivoting arm. In both devices a small accelerometer is mounted behind the impacting tip. Prototype lateral impactor on-line sorting system for high-speed firmness sorting of fruits has been developed and tested. Preliminary results shows that is possible its use on-line. The last version of an impact device has new elements that improve the data resolution, the signal-noise ratio and the precision

    Dispositivo impactador de laboratorio para la determinación de la firmeza en fruta: una nueva versión.

    Get PDF
    Se ha desarrollado una nueva versión de un dispositivo impactador para obtener un sistema versátil y de fácil manejo. La resolución, la precisión y la relación señal-ruido son mayores en el nuevo sistema que en prototipos anteriores. Se ha realizado un diseño de experimentos con diferentes materiales usando el nuevo y el antiguo impactador para comprobar las mejoras conseguidas

    New version of a laboratory impact device for firmness sensing of fruits.

    Get PDF
    Results of previous studies conducted by different researchers have shown that impact techniques can be used to evaluate firmness (Delwiche et al., 1989; Delwiche et al.;1996; Jaren et al., 1992; Ruiz Altisent et al., 1996). To impact the fruit with a small spherical impactor of known mass and radius of curvature and measure the acceleration of the impactor is a technique described by Chen et al. (1985) and used by several researchers for sensing fruit firmness (Jaren et al., 1992; Correa et al.; 1992). The advantages of this method vs. a force sensor that measures the force as a function of time is that the measured impact-acceleration response is independent of the fruit mass and is less sensitive to the variation in the radius of curvature of the fruit (Chen et al., 1996). Ruiz Altisent et al. (1993) developed and used a 50 g impactor with a 19 mm diameter spherical tip, dropping from different height for fruits (apples, pears, avocados, melons, peaches ...). Another impact device for firmness sensing of fruits was developed by Chen and Ruiz Altisent (1996). They designed and fabricated an experimental low-mass impact sensor for high-speed sensing of fruit firmness. The impactor consisted of a semi-spherical impacting tip attached to the end (near the centre of percussion) of a pivoting arm. Impact is done by swinging the impactor to collide with the fruit. It has been implemented for on-line use. In both devices a small accelerometer is mounted behind the impacting tip. Lateral impactor and vertical impactor have been used in laboratory and the results from non-destructive impact tests have contributed to standardise methods to measure fruit firmness: Barreiro (1992) compared impact parameters and results of Magness-Taylor penetration tests for apples, pears, apricots [and peaches; Agulheiro (1994) studied the behaviour of the impact parameters during seven weeks of cold storage of two melon varieties; Ortiz (1998) used low energy impact and NIR procedures to segregate non crispy, non firm and soft peaches. Steinmetz (1996) compared various non-destructive firmness sensors, based on sound, impact and micro-deformation

    On the thermodynamic origin of metabolic scaling

    Get PDF
    This work has been funded by projects AYA2013-48623-C2-2, FIS2013-41057-P, CGL2013-46862-C2-1-P and SAF2015-65878-R from the Spanish Ministerio de Economa y Competitividad and PrometeoII/2014/086, PrometeoII/2014/060 and PrometeoII/2014/065 from the Generalitat Valenciana (Spain). BL acknowledges funding from a Salvador de Madariaga fellowship, and L.L. acknowledges funding from EPSRC Early Career fellowship EP/P01660X/1

    Comparative study of the complement-activating and specific IgE-binding properties of ragweed pollen allergen

    No full text
    Previous reports have defined the capacity of ragweed pollen extract (RWA) to activate human complement (C) in fluid phase through the classical pathway and have ascertained a strong correlation between the extent of complement activation and the severity of symptoms of allergic rhinoconjunctivitis during the ragweed blooming season. In the present study the complement-activating and specific IgE-binding capacities of various ragweed allergen preparations were compared. Elimination of physically adsorbed (flavonoid) pigments from the allergenic proteins had no significant effect on their complement-consuming capacity, although the process strongly diminished specific IgE binding. Removal of an IgE-binding trypsin inhibitor from RWA significantly enhanced RWA-induced complement activation, whereas it did not change IgE binding. These findings indicate that neither the physically adsorbed pigments nor the trypsin inhibitor are involved in complement activation by ragweed pollen allergens, and suggest that complement activation and specific IgE binding are distinct molecular properties of ragweed pollen allergen
    corecore