195 research outputs found
Manipulation of the surface density of states of Ag(111) by means of resonators. Experiment and theory.
We show that the density of surface Shockley states of Ag(111) probed by the differential conductance G(V ) = d I /d V by a scanning-tunneling microscope (STM) can be enhanced significantly at certain energies and positions introducing simple arrays of Co or Ag atoms on the surface, in contrast to other noble-metal surfaces. Specifically we have studied resonators consisting of two parallel walls of five atoms deposited on the clean Ag(111) surface. A simple model in which the effect of the adatoms is taken into account by an attractive local potential and a small hybridization between surface and bulk at the position of the adatoms explains the main features of the observed G(V ) and allows us to extract the proportion of surface and bulk states sensed by the STM tip. These results might be relevant to engineer the surface spectral density of states, to study the effects of surface states on the Kondo effect, and to separate bulk and surface contributions in STM studies of topological surface states
Ambulatory surgery in orthopedics: experience of over 10,000 patients
PurposeThe concept of day surgery is becoming an increasingly important part of elective surgery worldwide. Relentless pressure to cut costs may constrain clinical judgment regarding the most appropriate location for a patient’s surgical care. The aim of this study was to determine clinical and quality indicators relating to our experience in orthopedic day durgery, mainly in relation to unplanned overnight admission and readmission rates. Additionally, we focused on describing the main characteristics of the patients that experienced complications, and compared the patient satisfaction rates following ambulatory and non-ambulatory procedures.MethodsWe evaluated 10,032 patients who underwent surgical orthopedic procedures according to the protocols of our Ambulatory Surgery Unit. All complications that occurred were noted. A quality-of-life assessment (SF-36 test) was carried out both pre- and postoperatively. Ambulatory substitution rates and quality indicators for orthopedic procedures were also determined.ResultsThe major complication rate was minimal, with no mortal cases, and there was a high rate of ambulatory substitution for the procedures studied. Outcomes of the SF-36 questionnaire showed significant improvement postoperatively. An unplanned overnight admission rate of 0.14 % was achieved.ConclusionsOur institution has shown that it is possible to provide good-quality ambulatory orthopedic surgery. There still appears to be the potential to increase the proportion of these procedures. Surgeons and anesthesiologists must strongly adhere to strict patient selection criteria for ambulatory orthopedic surgery in order to reduce complications in the immediate postoperative term
The aryl hydrocarbon receptor ligand FICZ improves left ventricular remodeling and cardiac function at the onset of pressure overload-Induced heart failure in mice
Adverse ventricular remodeling is the heart’s response to damaging stimuli and is linked to heart failure and poor prognosis. Formyl-indolo [3,2-b] carbazole (FICZ) is an endogenous ligand for the aryl hydrocarbon receptor (AhR), through which it exerts pleiotropic effects including protection against inflammation, fibrosis, and oxidative stress. We evaluated the effect of AhR activation by FICZ on the adverse ventricular remodeling that occurs in the early phase of pressure overload in the murine heart induced by transverse aortic constriction (TAC). Cardiac structure and function were evaluated by cardiac magnetic resonance imaging (CMRI) before and 3 days after Sham or TAC surgery in mice treated with FICZ or with vehicle, and cardiac tissue was used for biochemical studies. CMRI analysis revealed that FICZ improved cardiac function and attenuated cardiac hypertrophy. These beneficial effects involved the inhibition of the hypertrophic calcineurin/NFAT pathway, transcriptional reduction in pro-fibrotic genes, and antioxidant effects mediated by the NRF2/NQO1 pathway. Overall, our findings provide new insight into the role of cardiac AhR signaling in the injured heart.This research was supported by Grants SAF2017-84777-R, funded by the Ministry of Economy and Competitiveness (MINECO) of Spain, PID2020-113238RB-I00 funded by the Ministry of Science and Innovation (MCIN)/AEI/ 10.13039/501100011033 of Spain and the “European Union Next GenerationEU/PRTR”; PI20/01482-1 funded by the Instituto de Salud Carlos III, CB16/11/00222 funded by the Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) and a Grant (Proyectos 2021) financed by the Universidad Francisco de Vitoria
Diurnal Differences in Immune Response in Brain, Blood and Spleen After Focal Cerebral Ischemia in Mice.
BACKGROUND
The immune response to acute cerebral ischemia is a major factor in stroke pathobiology. Circadian biology modulates some aspects of immune response. The goal of this study is to compare key parameters of immune response during the active/awake phase versus inactive/sleep phase in a mouse model of transient focal cerebral ischemia.
METHODS
Mice were housed in normal or reversed light cycle rooms for 3 weeks, and then they were blindly subjected to transient focal cerebral ischemia. Flow cytometry was used to examine immune responses in blood, spleen, and brain at 3 days after ischemic onset.
RESULTS
In blood, there were higher levels of circulating T cells in mice subjected to focal ischemia during zeitgeber time (ZT)1-3 (inactive or sleep phase) versus ZT13-15 mice (active or awake phase). In the spleen, organ weight and immune cell numbers were lower in ZT1-3 versus ZT13-15 mice. Consistent with these results, there was an increased infiltration of activated T cells into brain at ZT1-3 compared with ZT13-15.
CONCLUSIONS
This proof-of-concept study indicates that there are significant diurnal effects on the immune response after focal cerebral ischemia in mice. Hence, therapeutic strategies focused on immune targets should be reassessed to account for the effects of diurnal rhythms and circadian biology in nocturnal rodent models of stroke.Supported in part by the Rappaport Foundation and Leducq Foundation. The
authors thank all team members of the MGH animal facility for help with light
schedule switching.S
Unveiling the collaborative effect at the cucurbit[8]urilMoS2 hybrid interface for electrochemical melatonin determination
Host-guest interactions are of paramount importance in supramolecular chemistry and in a wide range of applications. Particularly well known is the ability of cucurbit[n]urils (CB[n]) to selectively host small molecules. We show that the charge transfer and complexation capabilities of CB[n] are retained on the surface of 2D transition metal dichalcogenides (TMDs), allowing the development of efficient electrochemical sensing platforms. We unveil the mechanisms of host-guest recognition between the MoS2- CB[8] hybrid interface and melatonin (MLT), an important molecular regulator of vital constants in vertebrates. We find that CB[8] on MoS2 organizes the receptor portals perpendicularly to the surface, facilitating MLT complexation. This advantageous adsorption geometry is specific to TMDs and favours MLT electro-oxidation, as opposed to other 2D platforms like graphene, where one receptor portal is closed. This study rationalises the cooperative interaction in 2D hybrid systems to improve the efficiency and selectivity of electrochemical sensing platform
Validation of housekeeping genes for quantitative real-time PCR in in-vivo and in-vitro models of cerebral ischaemia
<p>Abstract</p> <p>Background</p> <p>Studies of gene expression in experimental cerebral ischaemia models can contribute to understanding the pathophysiology of brain ischaemia and to identifying prognostic markers and potential therapeutic targets. The normalization of relative qRT-PCR data using a suitable reference gene is a crucial prerequisite for obtaining reliable conclusions. No validated housekeeping genes have been reported for the relative quantification of the mRNA expression profile activated in in-vitro ischaemic conditions, whereas for the in-vivo model different reference genes have been used.</p> <p>The present study aims to determine the expression stability of ten housekeeping genes (Gapdh, β2m, Hprt, Ppia, Rpl13a, Oaz1, 18S rRNA, Gusb, Ywhaz and Sdha) to establish their suitability as control genes for in-vitro and in-vivo cerebral ischaemia models.</p> <p>Results</p> <p>The expression stability of the candidate reference genes was evaluated using the 2<sup>-ΔC'T </sup>method and ANOVA followed by Dunnett's test. For the in-vitro model using primary cultures of rat astrocytes, all genes analysed except for Rpl13a and Sdha were found to have significantly different levels of mRNA expression. These different levels were also found in the case of the in-vivo model of pMCAO in rats except for Hprt, Sdha and Ywhaz mRNA, where the expression did not vary. Sdha and Ywhaz were identified by geNorm and NormFinder as the two most stable genes.</p> <p>Conclusion</p> <p>We have validated endogenous control genes for qRT-PCR analysis of gene expression in in-vitro and in-vivo cerebral ischaemia models. For normalization purposes, Rpl13a and Sdha are found to be the most suitable genes for the in-vitro model and Sdha and Ywhaz for the in-vivo model. Genes previously used as housekeeping genes for the in-vivo model in the literature were not validated as good control genes in the present study, showing the need for careful evaluation for each new experimental setup.</p
Elastic and break-up of the 1n-halo 11Be nucleus
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0.-- Trabajo presentado a la: "International Nuclear Physics Conference" (INPC), celebrada en Firenze (Italia) del 2 al 7 de junio de 2013.-- et al.The elastic and break-up angular distributions of the 10,11Be+64Zn reactions measured at Ec.m. ≈1.4 VC have been analysed within the CCDC and O.M. frameworks. The suppression of the Coulomb-nuclear interference, observed in the 11Be scattering case with respect to the 10Be, has been interpreted as due to a long range absorption owing to the coupling with the break-up (Coulomb and nuclear) channels. The presence of 10Be events on the 11Be experiment data have been explained as due mainly to break-up processes. C Owned by the authors, published by EDP Sciences, 2014Peer Reviewe
Experimental study of the collision 11Be + 64Zn around the Coulomb barrier
In this paper details of the experimental procedure and data analysis of the collision of 11Be +64Zn around the Coulomb barrier are described and discussed in the framework of different theoretical approaches. In a previous work, the elastic scattering angular distribution of the collisions 9 ,10Be +64Zn as well as the angular distribution for the quasielastic scattering and transfer/breakup cross sections for the 11Be +64Zn reaction were briefly reported. The suppression of the quasielastic angular distribution in the Coulomb-nuclear interference angular region observed in the collision of the 11Be halo nucleus with respect to the other two beryllium isotopes was interpreted as being caused by a long-range absorption owing to the long decay length of the 11Be wave function. In this paper, new continuum-discretized coupled-channel calculations of the 11Be +64Zn reaction are reported in the attempt to interpret the effect of coupling with the breakup channels on the measured cross sections. The calculations show that the observed suppression of the Coulomb-nuclear interference peak is caused by a combined effect of Coulomb and nuclear couplings to the breakup channels.INFN y Ministerio de Ciencia e Innovación (España) FPA2009-07653 FPA2009-07387 FPA2010-17142Comisión Europea 50606
- …