2 research outputs found
Luminescence Properties of Mesoporous Silica Nanoparticles Encapsulating Different Europium Complexes: Application for Biolabelling
In this work we have synthesized and characterized new hybrid nanoplatforms for luminescent biolabeling based on the concept of Eu3+ complexes encapsulation in mesoporous silica nanoparticles (≈100 nm). Eu complexes have been selected on the basis of their capability to be excited at 365 nm which is a currently available wavelength, on routine epifluorescence microscope. For Eu complexes encapsulation, two different routes have been used: the first route consists in grafting the transition metal complex into the silica wall surface. The second way deals with impregnation of the mesoporous silica NPs with the Eu complex. Using the second route, a silica shell coating is realized, to prevent any dye release, and the best result has been obtained using Eu-BHHCT complex. However, the best solution appears to be the grafting of Eu(TTA)3-Phen-Si to mesoporous silica NPs. For this hybrid, mSiO2-Eu(TTA)3(Phen-Si) full characterization of the nanoplatforms is also presented
Sol-Gel TiO2 thin films sensitized with the mulberry pigment cyanidin
TiO2 films have various applications, among them solar cells and photodegradation of pollutants. In this study, we investigated TiO2 films functionalized with the organic dye cyanidin extracted from black mulberry (Morus nigra). The TiO2 was functionalized by the sol-gel method and the film was deposited on glass substrates by dip-coating. Our aim was to investigate the interaction between the semiconductor and the dye, as well as the influence of the velocity and number of deposits on the characteristics of the film. Using ultraviolet-visible spectroscopy, we observed a shift from the maximum absorption band at 545 nm for the dye’s ethanol solution to 595 nm for the film, indicating interaction of the cyanidin with the TiO2. The absorption spectra in the infrared region of the functionalized TiO2 particles showed bands characteristic of the oxide and indicated their interaction with the dye. Using profilometry and m-line techniques, we found that the films presented thicknesses in the order of 100 nm. A SEM analysis confirmed the high density of the films