1,529 research outputs found

    The Modal Unity of Anselm\u27s Proslogion

    Get PDF

    Mark C. Murphy, AN ESSAY ON DIVINE AUTHORITY

    Get PDF

    What Euthyphro Couldn\u27t Have Said

    Get PDF

    Pattern and chaos: New images in the semantics of paradox

    Get PDF

    Transcranial direct current stimulation and sports performance

    Get PDF
    The application of transcranial direct current stimulation (tDCS) hasmoved fromthe laboratory to the wider community. This form of non-invasive brain stimulation has been shown in a number of controlled animal and human experiments, over nearly five decades, to modulate brain physiology, cognitive functions, and behavior. While its effects are variable across and within individuals, it is not unreasonable to state that tDCS harbors the potential to enhance executive and physical human performance. In a society increasingly driven to succeed with less effort, performance enhancement with an intervention that has an excellent safety record, is well tolerated, relatively inexpensive and readily available, is particularly appealing. Here, we offer a perspective on tDCS for the enhancement of physical performance in sport

    Versatile Graphene-Based Platform for Robust Nanobiohybrid Interfaces

    Get PDF
    Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multi-technique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed

    Diagnostic accuracy of WHO screening criteria to guide lateral-flow lipoarabinomannan testing among HIV-positive inpatients: A systematic review and individual participant data meta-analysis

    Get PDF
    BACKGROUND: WHO recommends urine lateral-flow lipoarabinomannan (LF-LAM) testing with AlereLAM in HIV-positive inpatients only if screening criteria are met. We assessed the performance of WHO screening criteria and alternative screening tests/strategies to guide LF-LAM testing and compared diagnostic accuracy of the WHO AlereLAM algorithm (WHO screening criteria → AlereLAM) with AlereLAM and FujiLAM (a novel LF-LAM test). METHODS: We searched MEDLINE, Embase, and Cochrane Library from Jan 1, 2011 to March 1, 2020 for studies among adult/adolescent HIV-positive inpatients regardless of tuberculosis signs and symptoms. The reference standards were 1) AlereLAM or FujiLAM for screening tests/strategies and 2) culture or Xpert for AlereLAM/FujiLAM. We determined proportion of inpatients eligible for AlereLAM using WHO screening criteria; assessed accuracy of WHO criteria and alternative screening tests/strategies to guide LF-LAM testing; compared accuracy of WHO AlereLAM algorithm with AlereLAM/FujiLAM in all; and determined diagnostic yield of AlereLAM, FujiLAM, and Xpert MTB/RIF (Xpert). We estimated pooled proportions with a random-effects model, assessed diagnostic accuracy using random-effects bivariate models, and assessed diagnostic yield descriptively. FINDINGS: We obtained data from all 5 identified studies (n=3,504). The pooled proportion of inpatients eligible for AlereLAM using WHO criteria was 93% (95%CI 91, 95). Among screening tests/strategies to guide LF-LAM testing, WHO criteria, C-reactive protein (≥5 mg/L), and CD4 count (<200 cells/μL) had high sensitivities but low specificities; cough (≥2 weeks), haemoglobin (<8 g/dL), body mass index (<18.5 kg/m2), lymphadenopathy, and WHO-defined danger signs had higher specificities but suboptimal sensitivities. AlereLAM in all had the same sensitivity (62%) and specificity (88%) as WHO AlereLAM algorithm. Sensitivity of FujiLAM and AlereLAM was 69% and 48%, while specificity was 48% and 96%, respectively. Diagnostic yield of sputum Xpert was 29-41%, AlereLAM was 39-76%, and urine Xpert was 35-62%. In one study, FujiLAM diagnosed 80% of tuberculosis cases (vs 39% for AlereLAM), and sputum Xpert combined with AlereLAM, urine Xpert, or FujiLAM diagnosed 69%, 81%, and 92% of all cases, respectively. INTERPRETATION: WHO criteria and alternative screening tests/strategies have limited utility in guiding LF-LAM testing, suggesting that AlereLAM testing in all HIV-positive medical inpatients be implemented. Routine FujiLAM may improve tuberculosis diagnosis. FUNDING: None

    Chemistry below graphene: Decoupling epitaxial graphene from metals by potential-controlled electrochemical oxidation

    Get PDF
    While high-quality defect-free epitaxial graphene can be efficiently grown on metal substrates, strong interaction with the supporting metal quenches its outstanding properties. Thus, protocols to transfer graphene to insulating substrates are obligatory, and these often severely impair graphene properties by the introduction of structural or chemical defects. Here we describe a simple and easily scalable general methodology to structurally and electronically decouple epitaxial graphene from Pt(111) and Ir(111) metal surfaces. A multi-technique characterization combined with ab-initio calculations was employed to fully explain the different steps involved in the process. It was shown that, after a controlled electrochemical oxidation process, a single-atom thick metal-hydroxide layer intercalates below graphene, decoupling it from the metal substrate. This decoupling process occurs without disrupting the morphology and electronic properties of graphene. The results suggest that suitably optimized electrochemical treatments may provide effective alternatives to current transfer protocols for graphene and other 2D materials on diverse metal surfacesWe acknowledge funding from the Spanish MINECO (Grants MAT2014-54231-C4-1-P, MAT2014-54231-C4-4-P, MAT2013- 47898-C2-2-R and MAT2017-85089-C2-1-R), the EU via the ERCSynergy Program (Grant ERC-2013-SYG-610256 NANOCOSMOS), the innovation program under grant agreement No. 696656 (GrapheneCore1- Graphene-based disruptive technologies), the Comunidad Aut_onoma de Madrid (CAM) MAD2D-CM Program (S2013/ MIT-3007) and computing resources from CTI-CSIC. GOI acknowledges financial support from FCT, Ministry of Science and Technology, Portugal (Grant No. PTDC/CTM-NAN/121108/2010 and IF/ 01054/2015). EL acknowledges funding from Spanish “Consolider” project CSD2010-00024. JIM acknowledges the financial support by the “Ramón y Cajal” Program of MINECO (Grant RYC-2015-17730) and NANOCOSMO
    corecore