10 research outputs found

    Intrinsic function of the peptidylarginine deiminase PADI4 is dispensable for normal haematopoiesis.

    Get PDF
    Peptidylarginine deiminases (PADIs) are strongly associated with the development of autoimmunity, neurodegeneration and cancer but their physiological roles are ill-defined. The nuclear deiminase PADI4 regulates pluripotency in the mammalian pre-implantation embryo but its function in tissue development is unknown. PADI4 is primarily expressed in the bone marrow, as part of a self-renewal-associated gene signature. It has been shown to regulate the proliferation of multipotent haematopoietic progenitors and proposed to impact on the differentiation of haematopoietic stem cells (HSCs), suggesting that it controls haematopoietic development or regeneration. Using conditional in vivo models of steady state and acute Padi4 ablation, we examined the role of PADI4 in the development and function of the haematopoietic system. We found that PADI4 loss does not significantly affect HSC self-renewal or differentiation potential upon injury or serial transplantation, nor does it lead to HSC exhaustion or premature ageing. Thus PADI4 is dispensable for cell-autonomous HSC maintenance, differentiation and haematopoietic regeneration. This work represents the first study of PADI4 in tissue development and indicates that pharmacological PADI4 inhibition may be tolerated without adverse effects

    Mannose metabolism inhibition sensitizes acute myeloid leukaemia cells to therapy by driving ferroptotic cell death

    Get PDF
    Acknowledgements We wish to thank the Barts Cancer Institute tissue bank for sample collection and processing. This research was supported by the BCI Flow cytometry facility (CRUK Core Award C16420/A18066). This work was supported by the Wellcome Trust (PG, 109967/Z/15/Z), the American Society of Haematology (PG, Global Research Award) and Cancer Research UK (PG, Advanced Clinician Scientist fellowship, C57799/A27964). K.R-P. was supported by the Academy of Medical Sciences (SBF004\1099) J.H.M.P. was supported by a research grant from Science Foundation Ireland (SFI) under Grant Number 16/RC/3948 and co-funded under the European Regional Development Fund and by FutureNeuro industry partners. K.T. was funded by Wellcome Trust (Grant References: RG94424, RG83195, G106133), UKRI Medical Research Council (RG83195) and Leukaemia UK (G108148).Peer reviewedPublisher PD

    Mannose metabolism inhibition sensitizes acute myeloid leukaemia cells to therapy by driving ferroptotic cell death

    Get PDF
    Resistance to standard and novel therapies remains the main obstacle to cure in acute myeloid leukaemia (AML) and is often driven by metabolic adaptations which are therapeutically actionable. Here we identify inhibition of mannose-6-phosphate isomerase (MPI), the first enzyme in the mannose metabolism pathway, as a sensitizer to both cytarabine and FLT3 inhibitors across multiple AML models. Mechanistically, we identify a connection between mannose metabolism and fatty acid metabolism, that is mediated via preferential activation of the ATF6 arm of the unfolded protein response (UPR). This in turn leads to cellular accumulation of polyunsaturated fatty acids, lipid peroxidation and ferroptotic cell death in AML cells. Our findings provide further support to the role of rewired metabolism in AML therapy resistance, unveil a connection between two apparently independent metabolic pathways and support further efforts to achieve eradication of therapy-resistant AML cells by sensitizing them to ferroptotic cell death

    The mRNA m6A reader YTHDF2 suppresses proinflammatory pathways and sustains hematopoietic stem cell function

    No full text
    The mRNA N6-methyladenosine (m6A) modification has emerged as an essential regulator of normal and malignant hematopoiesis. Inactivation of the m6A mRNA reader YTHDF2, which recognizes m6A-modified transcripts to promote m6A-mRNA degradation, results in hematopoietic stem cell (HSC) expansion and compromises acute myeloid leukemia. Here we investigate the long-term impact of YTHDF2 deletion on HSC maintenance and multilineage hematopoiesis. We demonstrate that Ythdf2-deficient HSCs from young mice fail upon serial transplantation, display increased abundance of multiple m6A-modified inflammation-related transcripts, and chronically activate proinflammatory pathways. Consistent with the detrimental consequences of chronic activation of inflammatory pathways in HSCs, hematopoiesis-specific Ythdf2 deficiency results in a progressive myeloid bias, loss of lymphoid potential, HSC expansion, and failure of aged Ythdf2-deficient HSCs to reconstitute multilineage hematopoiesis. Experimentally induced inflammation increases YTHDF2 expression, and YTHDF2 is required to protect HSCs from this insult. Thus, our study positions YTHDF2 as a repressor of inflammatory pathways in HSCs and highlights the significance of m6A in long-term HSC maintenance

    Mental health, nature work and social inclusion

    No full text
    In this paper the powerful relations between mental health and nature are explored with reference to past asylum horticultural practices and to contemporary community gardening schemes for people with mental-health problems in the United Kingdom. Through the use of archival evidence, alongside contemporary voices of experience, understandings of the therapeutic and social dimensions to nature work are outlined and deconstructed. It is argued that particular discourses concerning the powers of nature (work) in managing madness and mental-health problems are largely consistent across time and space (from the asylum to the community). However, in the contemporary era it is particular types of nature work that arguably contribute most directly to state agendas for social inclusion, and therefore to securing the place of people with mental-health problems in mainstream society. By briefly profiling the voices of staff and ā€˜volunteersā€™ from two urban garden schemes in England and Scotland, different experiences of garden work as ā€˜restorativeā€™ and as ā€˜interventionistā€™ will be discussed. I conclude by evaluating how embodying and enacting gardening work act as a sustainable vehicle for new versions of social citizenship for people traditionally marginalised in mainstream society

    Mannose metabolism inhibition sensitizes acute myeloid leukaemia cells to therapy by driving ferroptotic cell death

    No full text
    Resistance to standard and novel therapies remains the main obstacle to cure in acute myeloid leukaemia (AML) and is often driven by metabolic adaptations which are therapeutically actionable. Here we identify inhibition of mannose-6-phosphate isomerase (MPI), the first enzyme in the mannose metabolism pathway, as a sensitizer to both cytarabine and FLT3 inhibitors across multiple AML models. Mechanistically, we identify a connection between mannose metabolism and fatty acid metabolism, that is mediated via preferential activation of the ATF6 arm of the unfolded protein response (UPR). This in turn leads to cellular accumulation of polyunsaturated fatty acids, lipid peroxidation and ferroptotic cell death in AML cells. Our findings provide further support to the role of rewired metabolism in AML therapy resistance, unveil a connection between two apparently independent metabolic pathways and support further efforts to achieve eradication of therapy-resistant AML cells by sensitizing them to ferroptotic cell death.Ā </p
    corecore