551 research outputs found

    Magnetic-field-induced supercurrent enhancement in hybrid superconductor/magnetic metal structures

    Full text link
    The dc transport properties of the (S/M)I(M/S) tunnel structure - proximity coupled superconductor (S) and magnetic (M) layers separated by an insulator (I) - in a parallel magnetic field have been investigated. We choose for the M metal the one in which the effective magnetic interaction, whether it arises from direct exchange interaction or due to configuration mixing, aligns spins of the conducting electrons antiparallel to the localized spins of magnetic ions. For tunnel structures under consideration, we predict that there are the conditions when the destructive action of the internal and applied magnetic fields on Cooper pairs is weakened and the increase of the applied magnetic field causes the field-induced enhancement of the tunnel critical current. The experimental realization of the novel interesting effect of the interplay between superconducting and magnetic orders is also discussed.Comment: 6 pages 2 figure

    Signatures of pressure induced superconductivity in insulating Bi2212

    Full text link
    We have performed several high pressure electrical resistance experiments on Bi1.98Sr2.06Y0.68Cu2O8, an insulating parent compound of the high-Tc Bi2212 family of copper oxide superconductors. We find a resistive anomaly, a downturn at low temperature, that onsets with applied pressure in the 20-40 kbar range. Through both resistance and magnetoresistance measurements, we identify this anomaly as a signature of induced superconductivity. Resistance to higher pressures decreases Tc, giving a maximum of 10 K. The higher pressure measurements exhibit a strong sensitivity to the hydrostaticity of the pressure environment. We make comparisons to the pressure induced superconductivity now ubiquitous in the iron arsenides.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Comparing Robustness of Pairwise and Multiclass Neural-Network Systems for Face Recognition

    Get PDF
    Noise, corruptions and variations in face images can seriously hurt the performance of face recognition systems. To make such systems robust, multiclass neuralnetwork classifiers capable of learning from noisy data have been suggested. However on large face data sets such systems cannot provide the robustness at a high level. In this paper we explore a pairwise neural-network system as an alternative approach to improving the robustness of face recognition. In our experiments this approach is shown to outperform the multiclass neural-network system in terms of the predictive accuracy on the face images corrupted by noise

    High Temperature Mixed State cc-Axis Dissipation in Low Carrier Density Y0.54Pr0.46Ba2Cu3O7δY_{0.54}Pr_{0.46}Ba_{2}Cu_{3}O_{7-\delta}

    Full text link
    The nature of the out-of-plane dissipation was investigated in underdoped Y0.54Pr0.46Ba2Cu3O7δY_{0.54}Pr_{0.46}Ba_{2}Cu_{3}O_{7-\delta} single crystals at temperatures close to the critical temperature. For this goal, temperature and angle dependent out-of-plane resistivity measurements were carried out both below and above the critical temperature. We found that the Ambegaokar-Halperin relationship [V. Ambegaokar, and B. I. Halperin, Phys. Rev. Lett. \textbf{22}, 1364 (1969)] depicts very well the angular magnetoresistivity in the investigated range of field and temperature. The main finding is that the in-plane phase fluctuations decouple the layers above the critical temperature and the charge transport is governed only by the quasiparticles. We also have calculated the interlayer Josephson critical current density, which was found to be much smaller than the one predicted by the theory of layered superconductors. This discrepancy could be a result of the d-wave symmetry of the order parameter and/or of the non BCS temperature dependence of the c-axis penetration length.Comment: Will appear in PR

    Observation of a temperature dependent electrical resistance minimum above the magnetic ordering temperature in Gd2_2PdSi3_3

    Get PDF
    Results on electrical resistivity, magnetoresistance, magnetic Results on electrical resistivity, magnetoresistance, magnetic susceptibility, heat capacity and Gd Mossbauer measurements on a Gd-based intermetallic compound, Gd2_{2}PdSi3_{3} are reported. A finding of interest is that the resistivity unexpectedly shows a well-defined minimum at about 45 K, well above the long range magnetic ordering temperature (21 K), a feature which gets suppressed by the application of a magnetic field. This observation in a Gd alloy presents an interesting scenario. On the basis of our results, we propose electron localization induced by s-f (or d-f) exchange interaction prior to long range magnetic order as a mechanism for the electrical resistance minimum.Comment: 4 pages, 4 figure

    A compact representation of the 2 photon 3 gluon amplitude

    Full text link
    A compact representation of the loop amplitude gamma gamma ggg -> 0 is presented. The result has been obtained by using helicity methods and sorting with respect to an irreducible function basis. We show how to convert spinor representations into a field strength representation of the amplitude. The amplitude defines a background contribution for Higgs boson searches at the LHC in the channel H -> gamma gamma + jet which was earlier extracted indirectly from the one-loop representation of the 5-gluon amplitude.Comment: 15 pages Latex, 6 eps files included, revised versio

    Non-Fermi-liquid behavior in nearly ferromagnetic metallic SrIrO3 single crystals

    Full text link
    We report transport and thermodynamic properties of single-crystal SrIrO3 as a function of temperature T and applied magnetic field H. We find that SrIrO3 is a non-Fermi-liquid metal near a ferromagnetic instability, as characterized by the following properties: (1) small ordered moment but no evidence for long-range order down to 1.7 K; (2) strongly enhanced magnetic susceptibility that diverges as T or T1/2 at low temperatures, depending on the applied field; (3) heat capacity C(T,H) ~ -Tlog T that is readily amplified by low applied fields; (4) a strikingly large Wilson ratio at T< 4K; and (5) a T3/2-dependence of electrical resistivity over the range 1.7 < T < 120 K. A phase diagram based on the data implies SrIrO3 is a rare example of a stoichiometric oxide compound that exhibits non-Fermi-liquid behavior near a quantum critical point (T = 0 and H = 0.23 T)

    Low temperature specific heat of the heavy fermion superconductor PrOs4_4Sb12_{12}

    Full text link
    We report the magnetic field dependence of the low temperature specific heat of single crystals of the first Pr-based heavy fermion superconductor PrOs4_4Sb12_{12}. The low temperature specific heat and the magnetic phase diagram inferred from specific heat, resistivity and magnetisation provide compelling evidence of a doublet ground state and hence superconductivity mediated by quadrupolar fluctuations. This establishes PrOs4_4Sb12_{12} as a very strong contender of superconductive pairing that is neither electron-phonon nor magnetically mediated.Comment: 4 pages, 4 figure
    corecore