1,017 research outputs found
Evolution of crystalline electric field effects, superconductivity, and heavy fermion behavior in the specific heat of Pr(OsRu)Sb
Specific heat measurements were made on single crystals of the
superconducting filled skutterudite series Pr(OsRu)Sb
down to 0.6 K. Crystalline electric field fits in the normal state produced
parameters which were in agreement with previous measurements. Bulk
superconductivity was observed for all values of the Ru concentration with
transition temperatures consistent with previous experiments, confirming a
minimum in at . The data below appear to be more
consistent with power law behavior for (PrOsSb), and with
exponential behavior for . An enhanced electronic
specific heat coefficient was observed for , further
supporting as a critical concentration where the physical
properties abruptly change. Significant enhancement of above
the weak coupling value was only observed for and .Comment: 16 pages, 5 figures, submitted to Physical Review B. v2: text added
and figures modifie
Impurity induced density of states and residual transport in nonunitary superconductors
We obtain general expressions for the residual density of states, electrical
conductivity and thermal conductivity for non-unitary superconductors due to
impurity scattering. We apply the results to the so-called `B phase' of
PrOs4Sb12, which we describe using a non-unitary gap function derived from
symmetry considerations. The conductivity tensor has inequivalent diagonal
components due to off-axis nodal positions which may be detectable in
experiments.Comment: 8 pages, 1 figur
Anomalous Paramagnetic Magnetization in Mixed State of CeCoIn single crystals
Magnetization and torque measurements were performed on CeCoIn single
crystals to study the mixed-state thermodynamics. These measurements allow the
determination of both paramagnetic and vortex responses in the mixed-state
magnetization. The paramagnetic magnetization is suppressed in the mixed state
with the spin susceptibility increasing with increasing magnetic field. The
dependence of spin susceptibility on magnetic field is due to the fact that
heavy electrons contribute both to superconductivity and paramagnetism and a
large Zeeman effect exists in this system. No anomaly in the vortex response
was found within the investigated temperature and field range
Pairing Symmetry of CeCoIn Detected by In-plane Torque Measurements
In-plane torque measurements were performed on heavy fermion CeCoIn
single crystals in the temperature range 1.8 K K and
applied magnetic field up to 14 T. The normal-state torque is given by
. The reversible part of the
mixed-state torque, obtained after subtracting the corresponding normal state
torque, shows also a four-fold symmetry. In addition, sharp peaks are present
in the irreversible torque at angles of 4, 3/4, 5/4, 7/4,
etc. Both the four-fold symmetry in the reversible torque and the sharp peaks
in the irreversible torque of the mixed state imply symmetry of the
superconducting order parameter. The field and temperature dependences of the
reversible mixed-state torque provide further evidence for wave
symmetry. The four-fold symmetry in the normal state has a different origin
since it has different field and temperature dependences than the one in the
mixed state. The possible reasons of the normal state four-fold symmetry are
discussed
Crystalline electric field effects in the electrical resistivity of PrOsSb
The temperature and magnetic field dependencies of the electrical
resistivity of the recently discovered heavy fermion superconductor
\PrOsSb{} have features that are associated with the splitting of the Pr
Hund's rule multiplet by the crystalline electric field (CEF). These features
are apparently due to magnetic exchange and aspherical Coulomb scattering from
the thermally populated CEF-split Pr energy levels. The data
in zero magnetic field can be described well by calculations based on CEF
theory for various ratios of magnetic exchange and aspherical Coulomb
scattering, and yield CEF parameters that are qualitatively consistent with
those previously derived from magnetic susceptibility, specific heat, and
inelastic neutron scattering measurements. Calculated isotherms for a
ground state qualitatively account for the `dome-shaped' feature
in the measured isotherms.Comment: 8 pages, 2 figures, submitted to Journal of Physics: Condensed Matte
- β¦