1,052 research outputs found
Evolution of crystalline electric field effects, superconductivity, and heavy fermion behavior in the specific heat of Pr(OsRu)Sb
Specific heat measurements were made on single crystals of the
superconducting filled skutterudite series Pr(OsRu)Sb
down to 0.6 K. Crystalline electric field fits in the normal state produced
parameters which were in agreement with previous measurements. Bulk
superconductivity was observed for all values of the Ru concentration with
transition temperatures consistent with previous experiments, confirming a
minimum in at . The data below appear to be more
consistent with power law behavior for (PrOsSb), and with
exponential behavior for . An enhanced electronic
specific heat coefficient was observed for , further
supporting as a critical concentration where the physical
properties abruptly change. Significant enhancement of above
the weak coupling value was only observed for and .Comment: 16 pages, 5 figures, submitted to Physical Review B. v2: text added
and figures modifie
Impurity induced density of states and residual transport in nonunitary superconductors
We obtain general expressions for the residual density of states, electrical
conductivity and thermal conductivity for non-unitary superconductors due to
impurity scattering. We apply the results to the so-called `B phase' of
PrOs4Sb12, which we describe using a non-unitary gap function derived from
symmetry considerations. The conductivity tensor has inequivalent diagonal
components due to off-axis nodal positions which may be detectable in
experiments.Comment: 8 pages, 1 figur
Crystalline electric field effects in the electrical resistivity of PrOsSb
The temperature and magnetic field dependencies of the electrical
resistivity of the recently discovered heavy fermion superconductor
\PrOsSb{} have features that are associated with the splitting of the Pr
Hund's rule multiplet by the crystalline electric field (CEF). These features
are apparently due to magnetic exchange and aspherical Coulomb scattering from
the thermally populated CEF-split Pr energy levels. The data
in zero magnetic field can be described well by calculations based on CEF
theory for various ratios of magnetic exchange and aspherical Coulomb
scattering, and yield CEF parameters that are qualitatively consistent with
those previously derived from magnetic susceptibility, specific heat, and
inelastic neutron scattering measurements. Calculated isotherms for a
ground state qualitatively account for the `dome-shaped' feature
in the measured isotherms.Comment: 8 pages, 2 figures, submitted to Journal of Physics: Condensed Matte
High-pressure study of non-Fermi liquid and spin-glass-like behavior in CeRhSn
We present measurements of the temperature dependence of electrical
resistivity of CeRhSn up to ~ 27 kbar. At low temperatures, the electrical
resistivity varies linearly with temperature for all pressures, indicating
non-Fermi liquid behavior. Below a temperature Tf ~ 6 K, the electrical
resistivity deviates from a linear dependence. We found that the
low-temperature feature centered at T = Tf shows a pressure dependence dTf/dP ~
30 mK/kbar which is typical of canonical spin glasses. This interplay between
spin-glass-like and non-Fermi liquid behavior was observed in both CeRhSn and a
Ce0.9La0.1RhSn alloy.Comment: 5 pages, 3 figures, accepted for publication to Journal of Physics:
Condensed Matte
- …