3,718 research outputs found

    Probing the presence of a single or binary black hole in the globular cluster NGC 6752 with pulsar dynamics

    Full text link
    The five millisecond pulsars that inhabit NGC 6752 display locations or accelerations that are quite unusual compared to all other pulsars known in globular clusters. In particular PSR-A, a binary pulsar, lives in the cluster halo, while PSR-B and PSR-E, located in the core, show remarkably high negative spin derivatives. This is suggestive that some uncommon dynamical process is at play in the cluster core that we attribute to the presence of a massive perturber. We here investigate whether a single intermediate-mass black hole, lying on the extrapolation of the Mass versus Sigma relation observed in galaxy spheroids, or a less massive binary consisting of two black holes could play the requested role. To this purpose we simulated binary-binary encounters involving PSR-A, its companion star, and the black hole(s). Various scenarios are discussed in detail. In our close 4-body encounters, a black hole-black hole binary may attract on a long-term stable orbit a millisecond pulsar. Timing measurements on the captured satellite-pulsar, member of a hierarchical triplet, could unambiguously unveil the presence of a black hole(s) in the core of a globular cluster.Comment: 13 pages, 8 figures, Accepted for publication in The Astrophysical Journa

    Do open star clusters evolve toward energy equipartition?

    Get PDF
    We investigate whether open clusters (OCs) tend to energy equipartition, by means of direct N-body simulations with a broken power-law mass function. We find that the simulated OCs become strongly mass segregated, but the local velocity dispersion does not depend on the stellar mass for most of the mass range: the curve of the velocity dispersion as a function of mass is nearly flat even after several half-mass relaxation times, regardless of the adopted stellar evolution recipes and Galactic tidal field model. This result holds both if we start from virialized King models and if we use clumpy sub-virial initial conditions. The velocity dispersion of the most massive stars and stellar remnants tends to be higher than the velocity dispersion of the lighter stars. This trend is particularly evident in simulations without stellar evolution. We interpret this result as a consequence of the strong mass segregation, which leads to Spitzer's instability. Stellar winds delay the onset of the instability. Our simulations strongly support the result that OCs do not attain equipartition, for a wide range of initial conditions

    Periodic signals from the Circinus region: two new cataclysmic variables and the ultraluminous X-ray source candidate GC X-1

    Full text link
    The examination of two 2010 Chandra ACIS exposures of the Circinus galaxy resulted in the discovery of two pulsators: CXO J141430.1-651621 and CXOU J141332.9-651756. We also detected 26-ks pulsations in CG X-1, consistently with previous measures. For ~40 other sources, we obtained limits on periodic modulations. In CXO J141430.1-651621, which is ~2 arcmin outside the Circinus galaxy, we detected signals at 6120(1) s and 64.2(5) ks. In the longest observation, the source showed a flux of ~1.1e-13 erg/cm^2/s (absorbed, 0.5-10 keV) and the spectrum could be described by a power-law with photon index ~1.4. From archival observations, we found that the luminosity is variable by ~50 per cent on time-scales of weeks-years. The two periodicities pin down CXO J141430.1-651621 as a cataclysmic variable of the intermediate polar subtype. The period of CXOU J141332.9-651756 is 6378(3) s. It is located inside the Circinus galaxy, but the low absorption indicates a Galactic foreground object. The flux was ~5e-14 erg/cm^2/s in the Chandra observations and showed ~50 per cent variations on weekly/yearly scales; the spectrum is well fit by a power law ~0.9. These characteristics and the large modulation suggest that CXOU J141332.9-651756 is a magnetic cataclysmic variable, probably a polar. For CG X-1, we show that if the source is in the Circinus galaxy, its properties are consistent with a Wolf-Rayet plus black hole binary. We consider the implications of this for ultraluminous X-ray sources and the prospects of Advanced LIGO and Virgo. In particular, from the current sample of WR-BH systems we estimate an upper limit to the detection rate of stellar BH-BH mergers of ~16 events per yr.Comment: 17 pages, 7 figures, 6 tables; accepted for publication in MNRA

    Chemical Range of Stability for Self-Dusting Ladle Furnace Slags and Destabilizing Effect of Sulfur

    Get PDF
    Ladle furnace slags are characterized by volumetric expansions associated with the transition of dicalcium silicate (C2S) from β to Îł phase, which generates fine dust during cooling, causing handling and storage issues that further reduce their recycling opportunities. The present work focuses on the effect of slag basicity on dusting and the role of sulfur on slag stability. Seven synthetic ladle slag precursors were made by mixing lime, magnesia, quartz and alumina in different proportions to match effective industrial compositions, increasing the binary basicity and keeping the ternary and quaternary indexes unchanged. Samples were heated to 1500 Â°C for 15 min and monitored during air cooling (< 5 Â°C/s) through thermocouples and camera to characterize the behavior, temperature, and time interval of dusting. The cooled samples were characterized chemically, mineralogically and morphologically. Starting from the chemistry of a self-stabilized slag, five additional slag precursors, characterized by increasing amounts of S, were created and analyzed using the same procedures. Experimental evidence showed the presence of three different dusting behaviors (stable, partial and complete) and stabilization of the slag once an optical basicity of 0.748 or higher was reached. In addition, mayenite was identified as the main phase capable of suppressing the β to Îł transition by exerting hydrostatic pressure on C2S. Finally, although S can stabilize the β phase when dissolved in it, after saturation it precipitates as CaS, which can react with mayenite, locally decreasing the optical basicity and allowing dusting. Graphical Abstract: [Figure not available: see fulltext.]

    Effect of Particle Size and Starch Gelatinization on the Mechanical and Metallurgical Performance of Jarosite Plus Blast Furnace Sludge Self-Reducing Briquettes

    Get PDF
    Jarosite and blast furnace sludge (BFS) are two of the main wastes from hydrometallurgical zinc production and iron production by blast furnace, respectively. Jarosite is a hazardous material that can, however, be reused in the steel industry after the recovering of the iron contained within it through carbothermal reduction in which BFS is exploited as a reducing agent. Yet, both wastes have a powdery nature that makes it necessary to agglomerate them for industrial use. On the other hand, despite the advantages of producing a self-reducing product, the particle size of the starting powders and the level of gelatinization of the binder could play a crucial role on the mechanical and metallurgical performance and, consequently, on the industrial applicability of the briquettes. Accordingly, two powder particle sizes (very fine sand vs. coarse silt) and three degree of corn starch binder retrogradation (10%, 30% and non-gelatinized starch) were used to produce briquettes, and their influence was studied by experimental and statistical investigation. The results showed that gelatinization plays the main role on the mechanical properties of briquettes, while particle size affects both density and reduction behavior; in particular, although all the mixtures were able to recover iron at 950 °C the most optimal mixture were obtained by using a granulometry of 63–125 μm for jarosite and less than 63 μm for BFS, while the local maximum of mechanical performance was obtained for a 30% starch retrogradation level

    The extended halo of NGC 2682 (M 67) from Gaia DR2

    Full text link
    Context: NGC 2682 is a nearby open cluster, approximately 3.5 Gyr old. Dynamically, most open clusters should dissolve on shorter timescales, of ~ 1 Gyr. Having survived until now, NGC 2682 was likely much more massive in the past, and is bound to have an interesting dynamical history. Aims: We investigate the spatial distribution of NGC 2682 stars to constrain its dynamical evolution, especially focusing on the marginally bound stars in the cluster outskirts. Methods: We use Gaia DR2 data to identify NGC 2682 members up to a distance of ~150 pc (10 degrees). Two methods (Clusterix and UPMASK) are applied to this end. We estimate distances to obtain three-dimensional stellar positions using a Bayesian approach to parallax inversion, with an appropriate prior for star clusters. We calculate the orbit of NGC 2682 using the GRAVPOT16 software. Results: The cluster extends up to 200 arcmin (50 pc) which implies that its size is at least twice as previously believed. This exceeds the cluster Hill sphere based on the Galactic potential at the distance of NGC 2682. Conclusions: The extra-tidal stars in NGC 2682 may originate from external perturbations such as disk shocking or dynamical evaporation from two-body relaxation. The former origin is plausible given the orbit of NGC 2682, which crossed the Galactic disk ~40 Myr ago.Comment: 9 pages, 5 figures, accepted for publication on A&

    Theta-frequency resonance at the cerebellum input stage improves spike timing on the millisecond time-scale

    Get PDF
    The neuronal circuits of the brain are thought to use resonance and oscillations to improve communication over specific frequency bands (Llinas, 1988; Buzsaki, 2006). However, the properties and mechanism of these phenomena in brain circuits remain largely unknown. Here we show that, at the cerebellum input stage, the granular layer (GRL) generates its maximum response at 5\u20137 Hz both in vivo following tactile sensory stimulation of the whisker pad and in acute slices following mossy fiber bundle stimulation. The spatial analysis of GRL activity performed using voltage-sensitive dye (VSD) imaging revealed 5\u20137 Hz resonance covering large GRL areas. In single granule cells, resonance appeared as a reorganization of output spike bursts on the millisecond time-scale, such that the first spike occurred earlier and with higher temporal precision and the probability of spike generation increased. Resonance was independent from circuit inhibition, as it persisted with little variation in the presence of the GABAA receptor blocker, gabazine. However, circuit inhibition reduced the resonance area more markedly at 7 Hz. Simulations with detailed computational models suggested that resonance depended on intrinsic granule cells ionic mechanisms: specifically, Kslow (M-like) and KA currents acted as resonators and the persistent Na current and NMDA current acted as amplifiers. This form of resonance may play an important role for enhancing coherent spike emission from the GRL when theta-frequency bursts are transmitted by the cerebral cortex and peripheral sensory structures during sensory-motor processing, cognition, and learning

    The ACS LCID project VII: the blue stragglers population in the isolated dSph galaxies Cetus and Tucana

    Full text link
    We present the first investigation of the Blue Straggler star (BSS) population in two isolated dwarf spheroidal galaxies of the Local Group, Cetus and Tucana. Deep HST/ACS photometry allowed us to identify samples of 940 and 1214 candidates, respectively. The analysis of the star formation histories of the two galaxies suggests that both host a population of BSSs. Specifically, if the BSS candidates are interpreted as young main sequence stars, they do not conform to their galaxy's age-metallicity relationship. The analysis of the luminosity function and the radial distributions support this conclusion, and suggest a non-collisional mechanism for the BSS formation, from the evolution of primordial binaries. This scenario is also supported by the results of new dynamical simulations presented here. Both galaxies coincide with the relationship between the BSS frequency and the absolute visual magnitude Mv found by Momany et al (2007). If this relationship is confirmed by larger sample, then it could be a valuable tool to discriminate between the presence of BSSs and galaxies hosting truly young populations.Comment: Accepted for publication on ApJ. 15 pages, 3 tables, 13 figures. A version with high resolution figure can be downloaded from http://rialto.ll.iac.es/proyecto/LCID/?p=publication
    • …
    corecore