3 research outputs found

    Effect of Different Tumbling Marination Methods and Time on the Water Status and Protein Properties of Prepared Pork Chops

    Get PDF
    The combined effect of tumbling marination methods (vacuum continuous tumbling marination, CT; vacuum intermittent tumbling marination, IT) and effective tumbling time (4, 6, 8, and 10 h) on the water status and protein properties of prepared pork chops was investigated. Results showed that regardless of tumbling time, CT method significantly decreased the muscle fiber diameter (MD) and significantly increased the total moisture content, product yield, salt soluble proteins (SSP) solubility, immobilized water component (p<0.05) compared with IT method. With the effective tumbling time increased from 4 h to 10 h, the fat content and the MD were significantly decreased (p<0.05), whereas the SSP solubility of prepared pork chops increased firstly and then decreased. Besides, an interactive effect between CT method and effective tumbling time was also observed for the chemical composition and proportion of immobilized water (p<0.05). These results demonstrated that CT method of 8 h was the most beneficial for improving the muscle structure and water distribution status, increasing the water-binding capacity and accelerating the marinade efficiency of pork chops; and thus, it should be chosen as the most optimal treatment method for the processing production of prepared pork chops

    Using home monitoring technology to study the effects of traumatic brain injury on older multimorbid adults: protocol for a feasibility study

    No full text
    Introduction The prevalence of traumatic brain injury (TBI) among older adults is increasing exponentially. The sequelae can be severe in older adults and interact with age-related conditions such as multimorbidity. Despite this, TBI research in older adults is sparse. Minder, an in-home monitoring system developed by the UK Dementia Research Institute Centre for Care Research and Technology, uses infrared sensors and a bed mat to passively collect sleep and activity data. Similar systems have been used to monitor the health of older adults living with dementia. We will assess the feasibility of using this system to study changes in the health status of older adults in the early period post-TBI.Methods and analysis The study will recruit 15 inpatients (&gt;60 years) with a moderate-severe TBI, who will have their daily activity and sleep patterns monitored using passive and wearable sensors over 6 months. Participants will report on their health during weekly calls, which will be used to validate sensor data. Physical, functional and cognitive assessments will be conducted across the duration of the study. Activity levels and sleep patterns derived from sensor data will be calculated and visualised using activity maps. Within-participant analysis will be performed to determine if participants are deviating from their own routines. We will apply machine learning approaches to activity and sleep data to assess whether the changes in these data can predict clinical events. Qualitative analysis of interviews conducted with participants, carers and clinical staff will assess acceptability and utility of the system.Ethics and dissemination Ethical approval for this study has been granted by the London-Camberwell St Giles Research Ethics Committee (REC) (REC number: 17/LO/2066). Results will be submitted for publication in peer-reviewed journals, presented at conferences and inform the design of a larger trial assessing recovery after TBI
    corecore