2 research outputs found

    Is Lockdown Bad for Social Anxiety in COVID-19 Regions?: A National Study in The SOR Perspective

    No full text
    Lockdown measures have been widely used to control and prevent virus transmission in pandemic regions. However, the psychological effects of lockdown measures have been neglected, and the related theoretical research lags behind the practice. The present study aimed to better understand the mechanism of social anxiety in pandemic regions where the lockdown measures were imposed, based on the conceptual framework of the Stimulus-Organism-Response (SOR). For that, this research investigated how lockdown measures and psychological distance influenced social anxiety in the pandemic region. The Chinese national data was analyzed for the outcome. The results showed that (1) psychological distance mediated the relationship between pandemic COVID-19 severity and social anxiety, (2) lockdown measures buffered the detrimental effect of the COVID-19 pandemic severity on social anxiety, (3) lockdown measures moderated the mediation effect of psychological distancing on social anxiety caused by the COVID-19 pandemic. In conclusion, under the SOR framework, the lockdown measures had a buffer effect on social anxiety in pandemic regions, with the mediating role of psychological distancing

    Convolutional Neural Network-Based Remote Sensing Images Segmentation Method for Extracting Winter Wheat Spatial Distribution

    No full text
    When extracting winter wheat spatial distribution by using convolutional neural network (CNN) from Gaofen-2 (GF-2) remote sensing images, accurate identification of edge pixel is the key to improving the result accuracy. In this paper, an approach for extracting accurate winter wheat spatial distribution based on CNN is proposed. A hybrid structure convolutional neural network (HSCNN) was first constructed, which consists of two independent sub-networks of different depths. The deeper sub-network was used to extract the pixels present in the interior of the winter wheat field, whereas the shallower sub-network extracts the pixels at the edge of the field. The model was trained by classification-based learning and used in image segmentation for obtaining the distribution of winter wheat. Experiments were performed on 39 GF-2 images of Shandong province captured during 2017–2018, with SegNet and DeepLab as comparison models. As shown by the results, the average accuracy of SegNet, DeepLab, and HSCNN was 0.765, 0.853, and 0.912, respectively. HSCNN was equally as accurate as DeepLab and superior to SegNet for identifying interior pixels, and its identification of the edge pixels was significantly better than the two comparison models, which showed the superiority of HSCNN in the identification of winter wheat spatial distribution
    corecore