436 research outputs found
Distinguishing among Scalar Field Models of Dark Energy
We show that various scalar field models of dark energy predict degenerate
luminosity distance history of the Universe and thus cannot be distinguished by
supernovae measurements alone. In particular, models with a vanishing
cosmological constant (the value of the potential at its minimum) are
degenerate with models with a positive or negative cosmological constant whose
magnitude can be as large as the critical density. Adding information from CMB
anisotropy measurements does reduce the degeneracy somewhat but not
significantly. Our results indicate that a theoretical prior on the preferred
form of the potential and the field's initial conditions may allow to
quantitatively estimate model parameters from data. Without such a theoretical
prior only limited qualitative information on the form and parameters of the
potential can be extracted even from very accurate data.Comment: 15 pages, 5 figure
Reinforcement Learning with Non-Markovian Rewards
The standard RL world model is that of a Markov Decision Process (MDP). A
basic premise of MDPs is that the rewards depend on the last state and action
only. Yet, many real-world rewards are non-Markovian. For example, a reward for
bringing coffee only if requested earlier and not yet served, is non-Markovian
if the state only records current requests and deliveries. Past work considered
the problem of modeling and solving MDPs with non-Markovian rewards (NMR), but
we know of no principled approaches for RL with NMR. Here, we address the
problem of policy learning from experience with such rewards. We describe and
evaluate empirically four combinations of the classical RL algorithm Q-learning
and R-max with automata learning algorithms to obtain new RL algorithms for
domains with NMR. We also prove that some of these variants converge to an
optimal policy in the limit.Comment: To Appear in AAAI 202
Evolution of density perturbations in double exponential quintessence models
In this work we investigate the evolution of matter density perturbations for
quintessence models with a self-interaction potential that is a combination of
exponentials. One of the models is based on the Einstein theory of gravity,
while the other is based on the Brans-Dicke scalar tensor theory. We constrain
the parameter space of the models using the determinations for the growth rate
of perturbations derived from data of the 2-degree Field Galaxy Redshift
Survey.Comment: 5 pages, 3 eps figure
Spherical collapse with dark energy
I discuss the work of Maor and Lahav [1], in which the inclusion of dark
energy into the spherical collapse formalism is reviewed. Adopting a
phenomenological approach, I consider the consequences of - a) allowing the
dark energy to cluster, and, b) including the dark energy in the virialization
process. Both of these issues affect the final state of the system in a
fundamental way. The results suggest a potentially differentiating signature
between a true cosmological constant and a dynamic form of dark energy. This
signature is unique in the sense that it does not depend on a measurement of
the value of the equation of state of dark energy.Comment: To appear in the proceedings of the ``Peyresq Physics 10" Workshop,
19 - 24 June 2005, Peyresq, Franc
Soft interaction model and the LHC data
Most models for soft interactions which were proposed prior to the
measurements at the LHC, are only marginally compatible with LHC data, our GLM
model has the same deficiency. In this paper we investigate possible causes of
the problem, by considering separate fits to the high energy (),
and low energy () data. Our new results are moderately higher
than our previous predictions. Our results for total and elastic cross sections
are systematically lower that the recent Totem and Alice published values,
while our results for the inelastic and forward slope agree with the data. If
with additional experimental data, the errors are reduced, while the central
cross section values remain unchanged, we will need to reconsider the physics
on which our model is built.Comment: 12 pp, 12 figures in .eps file
Fitting inverse power-law quintessence models using the SNAP satellite
We investigate the possibility of using the proposed SNAP satellite in
combination with low-z supernova searches to distinguish between different
inverse power-law quintessence models. If the true model is that of a
cosmological constant, we determine the prospects of ruling out the inverse
power-law potential. We show that SNAP combined with e.g. the SNfactory and an
independent measurement of the mass energy density to 17% accuracy can
distinguish between an inverse power-law potential and a cosmological constant
and put severe constraints on the power-law exponent.Comment: 5 pages, 6 figure
Dynamics and constraints of the Unified Dark Matter flat cosmologies
We study the dynamics of the scalar field FLRW flat cosmological models
within the framework of the Unified Dark Matter (UDM) scenario. In this model
we find that the main cosmological functions such as the scale factor of the
Universe, the scalar field, the Hubble flow and the equation of state parameter
are defined in terms of hyperbolic functions. These analytical solutions can
accommodate an accelerated expansion, equivalent to either the dark energy or
the standard models. Performing a joint likelihood analysis of the
recent supernovae type Ia data and the Baryonic Acoustic Oscillations traced by
the SDSS galaxies, we place tight constraints on the main cosmological
parameters of the UDM cosmological scenario. Finally, we compare the UDM
scenario with various dark energy models namely cosmology, parametric
dark energy model and variable Chaplygin gas. We find that the UDM scalar field
model provides a large and small scale dynamics which are in fair agreement
with the predictions by the above dark energy models although there are some
differences especially at high redshifts.Comment: 11 pages, 7 figures, published in Physical Review D, 78, 083509,
(2008
Constraining slow-roll inflation with WMAP and 2dF
We constrain slow-roll inflationary models using the recent WMAP data
combined with data from the VSA, CBI, ACBAR and 2dF experiments. We find the
slow-roll parameters to be and . For inflation models
we find that at the 2 and levels,
indicating that the model is under very strong pressure from
observations. We define a convergence criterion to judge the necessity of
introducing further power spectrum parameters such as the spectral index and
running of the spectral index. This criterion is typically violated by models
with large negative running that fit the data, indicating that the running
cannot be reliably measured with present data.Comment: 8 pages RevTeX4 file with six figures incorporate
Opportunities for future supernova studies of cosmic acceleration
We investigate the potential of a future supernova dataset, as might be
obtained by the proposed SNAP satellite, to discriminate among different ``dark
energy'' theories that describe an accelerating Universe. We find that many
such models can be distinguished with a fit to the effective
pressure-to-density ratio, , of this energy. More models can be
distinguished when the effective slope, , of a changing is also fit,
but only if our knowledge of the current mass density, , is improved.
We investigate the use of ``fitting functions'' to interpret luminosity
distance data from supernova searches, and argue in favor of a particular
preferred method, which we use in our analysis.Comment: Four pages including figures. Final published version. No significant
changes from v
A New 5 Flavour NLO Analysis and Parametrizations of Parton Distributions of the Real Photon
New, radiatively generated, NLO quark (u,d,s,c,b) and gluon densities in a
real, unpolarized photon are presented. We perform three global fits, based on
the NLO DGLAP evolution equations for Q^2>1 GeV^2, to all the available
structure function F_2^gamma(x,Q^2) data. As in our previous LO analysis we
utilize two theoretical approaches. Two models, denoted as FFNS_{CJK}1 & 2 NLO,
adopt the so-called Fixed Flavour-Number Scheme for calculation of the
heavy-quark contributions to F_2^gamma(x,Q^2), the CJK NLO model applies the
ACOT(chi) scheme. We examine the results of our fits by a comparison with the
LEP data for the Q^2 dependence of the F_2^gamma, averaged over various
x-regions, and the F_2,c^gamma. Grid parametrizations of the parton densities
for all fits are provided.Comment: 49 pages, 27 postscript figures; FORTRAN programs available at
http://www.fuw.edu.pl/~pjank/param.htm
- …