32,256 research outputs found

    Fractal space frames and metamaterials for high mechanical efficiency

    Full text link
    A solid slender beam of length LL, made from a material of Young's modulus YY and subject to a gentle compressive force FF, requires a volume of material proportional to L3f1/2L^{3}f^{1/2} [where f≡F/(YL2)â‰Ș1f\equiv F/(YL^{2})\ll 1] in order to be stable against Euler buckling. By constructing a hierarchical space frame, we are able to systematically change the scaling of required material with ff so that it is proportional to L3f(G+1)/(G+2)L^{3}f^{(G+1)/(G+2)}, through changing the number of hierarchical levels GG present in the structure. Based on simple choices for the geometry of the space frames, we provide expressions specifying in detail the optimal structures (in this class) for different values of the loading parameter ff. These structures may then be used to create effective materials which are elastically isotropic and have the combination of low density and high crush strength. Such a material could be used to make light-weight components of arbitrary shape.Comment: 6 pages, 4 figure

    Photometric properties and luminosity function of nearby massive early-type galaxies

    Full text link
    We perform photometric analyses for a bright early-type galaxy (ETG) sample with 2949 galaxies (Mr<−22.5M_{\rm r}<-22.5 mag) in the redshift range of 0.05 to 0.15, drawn from the SDSS DR7 with morphological classification from Galaxy Zoo 1. We measure the Petrosian and isophotal magnitudes, as well as the corresponding half-light radius for each galaxy. We find that for brightest galaxies (Mr<−23M_{\rm r}<-23 mag), our Petrosian magnitudes, and isophotal magnitudes to 25 mag/arcsec2{\rm mag/arcsec^2} and 1\% of the sky brightness are on average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSS Petrosian values, respectively. In the first case the underestimations are caused by overestimations in the sky background by the SDSS PHOTO algorithm, while the latter two are also due to deeper photometry. Similarly, the typical half-light radii (r50r_{50}) measured by the SDSS algorithm are smaller than our measurements. As a result, the bright-end of the rr-band luminosity function is found to decline more slowly than previous works. Our measured luminosity densities at the bright end are more than one order of magnitude higher than those of Blanton et al. (2003), and the stellar mass densities at M∗∌5×1011M⊙M_{\ast}\sim 5\times10^{11} M_{\odot} and M∗∌1012M⊙M_{\ast}\sim 10^{12} M_{\odot} are a few tenths and a factor of few higher than those of Bernardi et al. (2010). These results may significantly alleviate the tension in the assembly of massive galaxies between observations and predictions of the hierarchical structure formation model.Comment: 43 pages, 14 figures, version accepted for publication in the Astrophysical Journa

    Almost sure exponential stability of numerical solutions for stochastic delay differential equations

    Get PDF
    Using techniques based on the continuous and discrete semimartingale convergence theorems, this paper investigates if numerical methods may reproduce the almost sure exponential stability of the exact solutions to stochastic delay differential equations (SDDEs). The important feature of this technique is that it enables us to study the almost sure exponential stability of numerical solutions of SDDEs directly. This is significantly different from most traditional methods by which the almost sure exponential stability is derived from the moment stability by the Chebyshev inequality and the Borel–Cantelli lemma

    Two particle correlations: a probe of the LHC QCD medium

    Full text link
    The properties of Îł\gamma--jet pairs emitted in heavy-ion collisions provide an accurate mean to perform a tomographic measurement of the medium created in the collision through the study of the medium modified jet properties. The idea is to measure the distribution of hadrons emitted on the opposite side of the %oppositely by tagging the direct photon. The feasibility of such measurements is studied by applying the approach on the simulation data, we have demonstrated that this method allows us to measure, with a good approximation, both the jet fragmentation and the back-to-back azimuthal alignment of the direct photon and the jet. Comparing these two observables measured in pp collisions with the ones measured in AA collisions reveals the modifications induced by the medium on the jet structure and consequently allows us to infer the medium properties. In this contribution, we discuss a first attempt of such measurements applied to real proton-proton data from the ALICE experiment.Comment: 4 pages, 4 figures, Proceedings for Hot Quark 2010 Conferenc

    Microlensing of Sub-parsec Massive Binary Black Holes in Lensed QSOs: Light Curves and Size-Wavelength Relation

    Full text link
    Sub-parsec binary massive black holes (BBHs) are long anticipated to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circum-binary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circum-binary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii of the emission region at different wavelengths from mock light curves and find that the obtained half-light radius vs. wavelength relations of BBH QSO systems can be much flatter than those of single MBH QSO systems at a wavelength range determined by the BBH parameters, such as the total mass, mass ratio, separation, accretion rates, etc. The difference is primarily due to the existence of the gap. Such unique features on the light curves and half-light radius-wavelength relations of BBH QSO systems can be used to select and probe sub-parsec BBHs in a large number of lensed QSOs to be discovered by current and future surveys, including the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), the Large Synoptic Survey telescope (LSST) and Euclid.Comment: 18 pages, 17 figures, accepted for publication in the Astrophysical Journa

    Delay-dependent robust stability of stochastic delay systems with Markovian switching

    Get PDF
    In recent years, stability of hybrid stochastic delay systems, one of the important issues in the study of stochastic systems, has received considerable attention. However, the existing results do not deal with the structure of the diffusion but estimate its upper bound, which induces conservatism. This paper studies delay-dependent robust stability of hybrid stochastic delay systems. A delay-dependent criterion for robust exponential stability of hybrid stochastic delay systems is presented in terms of linear matrix inequalities (LMIs), which exploits the structure of the diffusion. Numerical examples are given to verify the effectiveness and less conservativeness of the proposed method

    A Rate-Splitting Based Bound-Approaching Transmission Scheme for the Two-User Symmetric Gaussian Interference Channel with Common Messages

    Get PDF
    This paper is concerned with a rate-splitting based transmission strategy for the two-user symmetric Gaussian interference channel that contains common messages only. Each transmitter encodes its common message into multiple layers by multiple codebooks that drawn from one separate code book, and transmits the superposition of the messages corresponding to these layers; each receiver decodes the messages from all layers of the two users successively. Two schemes are proposed for decoding order and optimal power allocation among layers respectively. With the proposed decoding order scheme, the sum-rate can be increased by rate-splitting, especially at the optimal number of rate-splitting, using average power allocation in moderate and weak interference regime. With the two proposed schemes at the receiver and the transmitter respectively, the sum-rate achieves the inner bound of HK without time-sharing. Numerical results show that the proposed optimal power allocation scheme with the proposed decoding order can achieve significant improvement of the performance over equal power allocation, and achieve the sum-rate within two bits per channel use (bits/channel use) of the sum capacity
    • 

    corecore