64 research outputs found

    An outbreak of aseptic meningitis caused by coxsackievirus A9 in Gansu, the People's Republic of China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An outbreak of aseptic meningitis occurred in Tianshui city of Gansu Province, the People's Republic of China, from March to June 2005. A total of 85 patients were clinical confirmed as aseptic meningitis in this outbreak.</p> <p>Results</p> <p>CVA9 was mainly responsible for this outbreak supported by the clinical manifestations of the patients, epidemiological data of the outbreak, the results of RT-PCR and complete VP1 sequence determination, conventional neutralization assays, IgM serological assays, viral isolation and phylogenetics analysis. Through phylogenetic analysis and homogeneity analysis for partial VP1 gene, the nucleotide and amino acid homologies between Gansu isolates and former Chinese CVA9 strains were 88.2%-96.1% and 97.2%-99.2%, respectively. Multiple transmission chains of CVA9 occurred in different provinces or years in China. Moreover, in order to clarify the genotype of CVA9, Gansu CVA9 strains isolated in this outbreak were compared with other CVA9 isolates based on VP1/2A junction regions (genotyping region) and they might belong to a new genotype of CVA9, which could be assigned for genotype XIII,</p> <p>Conclusions</p> <p>CVA9 was confirmed as the pathogen responsible for this outbreak. The phylogenetic analysis indicated that the CVA9 strains isolated in this outbreak might belong to a new genotype.</p

    Genetic characterization of Measles Viruses in China, 2004

    Get PDF
    Genetic characterization of wild-type measles virus was studied using nucleotide sequencing of the C-terminal region of the N protein gene and phylogenetic analysis on 59 isolates from 16 provinces of China in 2004. The results showed that all of the isolates belonged to genotype H1. 51 isolates were belonged to cluster 1 and 8 isolates were cluster 2 and Viruses from both clusters were distributed throughout China without distinct geographic pattern. The nucleotide sequence and predicted amino acid homologies of the 59 H1 strains were 96.5%–100% and 95.7%–100%, respectively. The report showed that the transmission pattern of genotype H1 viruses in China in 2004 was consistent with ongoing endemic transmission of multiple lineages of a single, endemic genotype. Multiple transmission pathways leaded to multiple lineages within endemic genotype

    An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of Hand Foot and Mouth Disease in Fuyang city of China

    Get PDF
    Hand, foot and mouth disease (HFMD), a common contagious disease that usually affects children, is normally mild but can have life-threatening manifestations. It can be caused by enteroviruses, particularly Coxsackieviruses and human enterovirus 71 (HEV71) with highly variable clinical manifestations. In the spring of 2008, a large, unprecedented HFMD outbreak in Fuyang city of Anhui province in the central part of southeastern China resulted in a high aggregation of fatal cases. In this study, epidemiologic and clinical investigations, laboratory testing, and genetic analyses were performed to identify the causal pathogen of the outbreak. Of the 6,049 cases reported between 1 March and 9 May of 2008, 3023 (50%) were hospitalized, 353 (5.8%) were severe and 22 (0.36%) were fatal. HEV71 was confirmed as the etiological pathogen of the outbreak. Phylogenetic analyses of entire VP1 capsid protein sequence of 45 Fuyang HEV71 isolates showed that they belong to C4a cluster of the C4 subgenotype. In addition, genetic recombinations were found in the 3D region (RNA-dependent RNA polymerase, a major component of the viral replication complex of the genome) between the Fuyang HEV71 strain and Coxsackievirus A16 (CV-A16), resulting in a recombination virus. In conclusion, an emerging recombinant HEV71 was responsible for the HFMD outbreak in Fuyang City of China, 2008

    Measles Resurgence Associated with Continued Circulation of Genotype H1 Viruses in China, 2005

    Get PDF
    Measles morbidity and mortality decreased significantly after measles vaccine was introduced into China in 1965. From 1995 to 2004, average annual measles incidence decreased to 5.6 cases per 100,000 population following the establishment of a national two-dose regimen. Molecular characterization of wild-type measles viruses demonstrated that genotype H1 was endemic and widely distributed throughout the country in China during 1995-2004. A total of 124,865 cases and 55 deaths were reported from the National Notifiable Diseases Reporting System (NNDRS) in 2005, which represented a 69.05% increase compared with 2004. Over 16,000 serum samples obtained from 914 measles outbreaks and the measles IgM positive rate was 81%. 213 wild-type measles viruses were isolated from 18 of 31 provinces in China during 2005, and all of the isolates belonged to genotype H1. The ranges of the nucleotide sequence and predicted amino acid sequence homologies of the 213 genotype H1 strains were 93.4%-100% and 90.0%-100%, respectively. H1-associated cases and outbreaks caused the measles resurgence in China in 2005. H1 genotype has the most inner variation within genotype, it could be divided into 2 clusters, and cluster 1 viruses were predominant in China throughout 2005

    Genetic characterization of wild-type measles viruses isolated in China, 2006-2007

    Get PDF
    Molecular characterization of wild-type measles viruses in China during 1995-2004 demonstrated that genotype H1 was endemic and widely distributed throughout the country. H1-associated cases and outbreaks caused a resurgence of measles beginning in 2005. A total of 210,094 measles cases and 101 deaths were reported by National Notifiable Diseases Reporting System (NNDRS) and Chinese Measles Laboratory Network (LabNet) from 2006 to 2007, and the incidences of measles were 6.8/100,000 population and 7.2/100,000 population in 2006 and 2007, respectively. Five hundred and sixty-five wild-type measles viruses were isolated from 24 of 31 provinces in mainland China during 2006 and 2007, and all of the wild type virus isolates belonged to cluster 1 of genotype H1. These results indicated that H1-cluster 1 viruses were the predominant viruses circulating in China from 2006 to 2007. This study contributes to previous efforts to generate critical baseline data about circulating wild-type measles viruses in China that will allow molecular epidemiologic studies to help measure the progress made toward China's goal of measles elimination by 2012

    The development and application of the two real-time RT-PCR assays to detect the pathogen of HFMD.

    Get PDF
    Large-scale Hand, Foot, and Mouth Disease (HFMD) outbreaks have frequently occurred in China since 2008, affecting more than one million children and causing several hundred children deaths every year. The pathogens of HFMD are mainly human enteroviruses (HEVs). Among them, human enterovirus 71 (HEV71) and coxsackievirus A16 (CVA16) are the most common pathogens of HFMD. However, other HEVs could also cause HFMD. To rapidly detect HEV71 and CVA16, and ensure detection of all HEVs causing HFMD, two real-time hybridization probe-based RT-PCR assays were developed in this study. One is a multiplex real-time RT-PCR assay, which was developed to detect and differentiate HEV71 specifically from CVA16 directly from clinical specimens within 1-2 h, and the other is a broad-spectrum real-time RT-PCR assay, which targeted almost all HEVs. The experiments confirmed that the two assays have high sensitivity and specificity, and the sensitivity was up to 0.1 TCID50/ml for detection of HEVs, HEV71, and CVA16, respectively. A total of 213 clinical specimens were simultaneously detected by three kinds of assays, including the two real-time RT-PCR assays, direct conventional RT-PCR assay, and virus isolation assay on human rhabdomyosarcoma cells (RD cells). The total positive rate of both HEV71 and CVA16 was 69.48% with real-time RT-PCR assay, 47.42% with RT-PCR assay, and 34.58% with virus isolation assay. One HFMD clinical specimen was positive for HEV, but negative for HEV71 or CVA16, which was identified as Echovirus 11 (Echo11) by virus isolation, RT-PCR, and sequencing for the VP1 gene. The two real-time RT-PCR assays had been applied in 31 provincial HFMD labs to detect the pathogens of HFMD, which has contributed to the rapid identification of the pathogens in the early stages of HFMD outbreaks, and helped to clarify the etiologic agents of HFMD in China

    Importance of real-time RT-PCR to supplement the laboratory diagnosis in the measles elimination program in China.

    No full text
    In addition to high vaccination coverage, timely and accurate laboratory confirmation of measles cases is critical to interrupt measles transmission. To evaluate the role of real-time reverse transcription-polymerase chain reaction (RT-PCR) in the diagnosis of measles cases, 46,363 suspected measles cases with rash and 395 suspected measles cases without rash were analyzed in this study; the cases were obtained from the Chinese measles surveillance system (MSS) during 2014-2017 and simultaneously detected by measles-specific IgM enzyme-linked immunosorbent assay (ELISA) and real-time RT-PCR. However, some IgM-negative measles cases were identified by real-time RT-PCR. The proportion of these IgM-negative and viral nucleic acid-positive measles cases was high among measles cases with measles vaccination history, cases without rash symptoms, and cases within 3 days of specimen collection after onset. The proportion of IgM-negative and viral nucleic acid-positive measles cases in the 0-3 day group was up to 14.4% for measles cases with rash and 40% for measles cases without rash. Moreover, the proportions of IgM-negative and nucleic acid-positive measles cases gradually increased with the increase in the measles vaccination dose. Therefore, integrated with IgM ELISA, real-time RT-PCR would greatly improve the accurate diagnosis of measles cases and avoid missing the measles cases, especially for measles cases during the first few days after onset when the patients were highly contagious and for measles cases with secondary vaccine failure. In conclusion, our study reconfirmed that IgM ELISA is the gold-standard detection assay for measles cases confirmation. However, real-time RT-PCR should be introduced and used to supplement the laboratory diagnosis, especially in the setting of pre-elimination and/or elimination wherever appropriate
    corecore