5,703 research outputs found

    Electroweak radiative corrections to triple photon production at the ILC

    Get PDF
    In this paper, we present the precision predictions for three photon production in the standard model (SM) at the ILC including the full next-to-leading (NLO) electroweak (EW) corrections, high order initial state radiation (h.o.ISR) contributions and beamstrahlung effects. We present the LO and the NLO EW+h.o.ISR+beamstrahlung corrected total cross sections for various colliding energy when s200GeV\sqrt s \ge 200 {\rm GeV} and the kinematic distributions of final photons with s=500GeV\sqrt s = 500 {\rm GeV} at ILC, and find that the NLO EW corrections, the h.o.ISR contributions and the beamstrahlung effects are important in exploring the process e+eγγγe^+e^- \to \gamma\gamma\gamma.Comment: 6 pages, 8 figures, accepted for publication in Physics Letters

    2-Iodo-3-nitro­pyridine

    Get PDF
    In the crystal structure of the title compound, C5H3IN2O2, inter­molecular C—H⋯N hydrogen-bonding inter­actions link the mol­ecules into one-dimensional chains along the b axis

    Optimizing production scheduling of steel plate hot rolling for economic load dispatch under time-of-use electricity pricing

    Get PDF
    Time-of-Use (TOU) electricity pricing provides an opportunity for industrial users to cut electricity costs. Although many methods for Economic Load Dispatch (ELD) under TOU pricing in continuous industrial processing have been proposed, there are still difficulties in batch-type processing since power load units are not directly adjustable and nonlinearly depend on production planning and scheduling. In this paper, for hot rolling, a typical batch-type and energy intensive process in steel industry, a production scheduling optimization model for ELD is proposed under TOU pricing, in which the objective is to minimize electricity costs while considering penalties caused by jumps between adjacent slabs. A NSGA-II based multi-objective production scheduling algorithm is developed to obtain Pareto-optimal solutions, and then TOPSIS based multi-criteria decision-making is performed to recommend an optimal solution to facilitate filed operation. Experimental results and analyses show that the proposed method cuts electricity costs in production, especially in case of allowance for penalty score increase in a certain range. Further analyses show that the proposed method has effect on peak load regulation of power grid.Comment: 13 pages, 6 figures, 4 table

    Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal

    Full text link
    Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.Comment: 11 pages, 5 figures, accepted by Quantum Information Processin

    Possible origin of β\beta-relaxation in amorphous metal alloys from atomic-mass differences of the constituents

    Get PDF
    We employ an atomic-scale theory within the framework of nonaffine lattice dynamics to uncover the origin of the Johari-Goldstein (JG) β\beta-relaxation in metallic glasses (MGs). Combining simulation and experimental data with our theoretical approach, we reveal that the large mass asymmetry between the elements in a La60_{60}Ni15_{15}Al25_{25} MG leads to a clear separation in the respective relaxation time scales, giving strong evidence that JG relaxation is controlled by the lightest atomic species present. Moreover, we show that only qualitative features of the vibrational density of states determine the overall observed mechanical response of the glass, paving the way for a possible unified theory of secondary relaxations in glasses

    2-Iodo-3-nitropyridine

    Full text link
    corecore