77 research outputs found

    Glutamate transporter: an unexpected target for some antibiotics

    Get PDF
    Glutamate transporter (GT) plays a major role in the mechanisms of glutamate homeostasis. Can this transporter system be a therapeutic target for glutamate-mediated neurological disorders? In January's edition of Nature, Rothstein et al (2005) reports that the most commonly used class of antibiotics (β-lactam antibiotics) such as ceftriaxone promoted the expression of GLT1 and demonstrated a functional role in both in vitro and in vivo models of glutamate neurotocixity. These findings indicate that positive promoters of GT expression may have a unique role in neuroprotection through regulating GT expression. This is also encouraging in search for new pharmacological tools for pain management

    Role of 5-HT1A-mediated upregulation of brain indoleamine 2,3 dioxygenase 1 in the reduced antidepressant and antihyperalgesic effects of fluoxetine during maintenance treatment

    Get PDF
    The reduced antidepressant and antihyperalgesic effects of selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine during maintenance treatment has been reported, but little is known about the molecular mechanism of this phenomenon. In three comorbid pain and depression animal models (genetic predisposition, chronic social stress, arthritis), we showed that the fluoxetine’s antidepressant and antihyperalgesic effects were reduced during the maintenance treatment. Fluoxetine exposure induced upregulation of the 5-hydroxytryptamine 1A (5-HT1A) auto-receptor and indoleamine 2,3 dioxygenase 1 (IDO1, a rate-limiting enzyme of tryptophan metabolism) in the brainstem dorsal raphe nucleus (DRN), which shifted the tryptophan metabolism away from the 5-HT biosynthesis. Mechanistically, IDO1 upregulation was downstream to fluoxetine-induced 5-HT1A receptor expression because 1) antagonism of the 5-HT1A receptor with WAY100635 or 5-HT1A receptor knockout blocked the IDO1 upregulation, and 2) inhibition of IDO1 activity did not block the 5-HT1A receptor upregulation following fluoxetine exposure. Importantly, inhibition of either the 5-HT1A receptor or IDO1 activity sustained the fluoxetine’s antidepressant and antihyperalgesic effects, indicating that 5-HT1A-mediated IDO1 upregulation in the brainstem DRN contributed to the reduced antidepressant and antihyperalgesic effects of fluoxetine. These results suggest a new strategy to improving the therapeutic efficacy of SSRI during maintenance treatment

    Pain and Opioid Addiction: What is the Connection?

    No full text
    Abstract Addiction to opioid analgesics is an important and yet underinvestigated clinical issue, which has substantial implications in opioid therapy for chronic pain management. Problematic opioid use, including compulsive opioid seeking and addiction, arises in some fraction of opioid-treated chronic pain patients. The connection between chronic pain and opioid addiction is a complex interplay between psychological, epidemiological, and neurobiological factors. Herein, we explore this critical relationship
    • …
    corecore