41 research outputs found
Project Overview of the Beijing-Arizona Sky Survey
The Beijing-Arizona Sky Survey (BASS) is a wide-field two-band photometric
survey of the Northern Galactic Cap using the 90Prime imager on the 2.3 m Bok
telescope at Kitt Peak. It is a four-year collaboration between the National
Astronomical Observatory of China and Steward Observatory, the University of
Arizona, serving as one of the three imaging surveys to provide photometric
input catalogs for target selection of the Dark Energy Spectroscopic Instrument
(DESI) project. BASS will take up to 240 dark/grey nights to cover an area of
about 5400 deg in the and bands. The 5 limiting AB
magnitudes for point sources in the two bands, corrected for the Galactic
extinction, are 24.0 and 23.4 mag, respectively. BASS, together with other DESI
imaging surveys, will provide unique science opportunities that cover a wide
range of topics in both Galactic and extragalactic astronomy.Comment: 10 pages, submitted to PAS
The First Data Release of the Beijing-Arizona Sky Survey
The Beijing-Arizona Sky Survey (BASS) is a new wide-field legacy imaging
survey in the northern Galactic cap using the 2.3m Bok telescope. The survey
will cover about 5400 deg in the and bands, and the expected
5 depths (corrected for the Galactic extinction) in the two bands are
24.0 and 23.4 mag, respectively. BASS started observations in January 2015, and
has completed about 41% of the whole area as of July 2016. The first data
release contains both calibrated images and photometric catalogs obtained in
2015 and 2016. The depths of single-epoch images in the two bands are 23.4 and
22.9 mag, and the full depths of three epochs are about 24.1 and 23.5 mag,
respectively.Comment: 16 pages, published by A
Recommended from our members
The dynamic evolution of multipoint interplanetary coronal mass ejections observed with BepiColombo, Tianwen-1, and MAVEN
We present two multipoint interplanetary coronal mass ejections (ICMEs) detected by the Tianwen-1 and Mars Atmosphere and Volatile Evolution spacecraft at Mars and the BepiColombo (0.56 au ā¼0.67 au) upstream of Mars from 2021 December 5 to 31. This is the first time that BepiColombo is used as an upstream solar wind monitor ahead of Mars and that Tianwen-1 is used to investigate the magnetic field characteristics of ICMEs at Mars. The Heliospheric Upwind Extrapolation time model was used to connect the multiple in situ observations and the coronagraph observations from STEREO/SECCHI and SOHO/LASCO. The first fast coronal mass ejection event (ā¼761.2 km sā1), which erupted on December 4, impacted Mars centrally and grazed BepiColombo by its western flank. The ambient slow solar wind decelerated the west flank of the ICME, implying that the ICME event was significantly distorted by the solar wind structure. The second slow ICME event (ā¼390.7 km sā1) underwent an acceleration from its eruption to a distance within 0.69 au and then traveled with the constant velocity of the ambient solar wind. These findings highlight the importance of background solar wind in determining the interplanetary evolution and global morphology of ICMEs up to Mars distance. Observations from multiple locations are invaluable for space weather studies at Mars and merit more exploration in the future
Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus
The discovery of a family of membrane water channel proteins called aquaporins, and the finding that aquaporin 1 was located in the choroid plexus, has prompted interest in the role of aquaporins in cerebrospinal fluid (CSF) production and consequently hydrocephalus. While the role of aquaporin 1 in choroidal CSF production has been demonstrated, the relevance of aquaporin 1 to the pathophysiology of hydrocephalus remains debated. This has been further hampered by the lack of a non-toxic specific pharmacological blocking agent for aquaporin 1. In recent times aquaporin 4, the most abundant aquaporin within the brain itself, which has also been shown to have a role in brain water physiology and relevance to brain oedema in trauma and tumours, has become an alternative focus of attention for hydrocephalus research. This review summarises current knowledge and concepts in relation to aquaporins, specifically aquaporin 1 and 4, and hydrocephalus. It also examines the relevance of aquaporins as potential therapeutic targets in hydrocephalus and other CSF circulation disorders
Continuous Tracking of Targets for Stereoscopic HFSWR Based on IMM Filtering Combined with ELM
High frequency surface wave radar (HFSWR) plays an important role in marine surveillance on account of its ability to provide wide-range early warning detection. However, vessel target track breakages are common in large-scale marine monitoring, which limits the continuous tracking ability of HFSWR. The following are the possible reasons for track fracture: highly maneuverable vessels, dense channels, target occlusion, strong clutter/interference, long sampling intervals, and low detection probabilities. To solve this problem, we propose a long-term continuous tracking method for multiple targets with stereoscopic HFSWR based on an interacting multiple model extended Kalman filter (IMMEKF) combined with an extreme learning machine (ELM). When the trajectory obtained by IMMEKF breaks, a new section of the track will start on the basis of the observation data. For multiple-target tracking, a number of broken tracks can be obtained by IMMEKF tracking. Then the ELM classifies the segments from the same vessel by extracting different features including average velocity, average curvature, ratio of the arc length to the chord length, and wavelet coefficient. Both the simulation and the field experiment results validate the method presented here, showing that this method can achieve long-term continuous tracking for multiple vessels, with an average correct track segment association rate of over 91.2%, which is better than the tracking performance of conventional algorithms, especially when the vessels are in dense channels and strong clutter/interference area
The Statistical Characteristics Analysis for Overvoltage of Elevated Transmission Line under High-Altitude Electromagnetic Pulse Based on Rosenblatt Transformation and Polynomial Chaos Expansion
A High-Altitude Electromagnetic Pulse (HEMP) could induce very fast transient overvoltage (VFTO) with nanosecond level rise time and mega-volt amplitude, which severely threatens the electrical devices connected to the elevated transmission line. An elevated transmission line with different locations may suffer different levels of HEMP threat since the dip angle could influence the polarization of the HEMP wave. The combination of Rosenblatt Transformation and Polynomial Chaos Expansion (R-PCE) is introduced in this paper. With this method, the efficiency of calculating the overvoltage of an elevated transmission line under HEMP is improved, speeding up 24.75 times. The influence of different factors (dip angle, elevated height, and earth conductivity) on the overvoltage of elevated transmission lines applied in power systems is calculated and analyzed. The numerical result shows with 99.9% confidence that the overvoltage would be over 3.7 MV of amplitude and 6.7 Ć 1014 V/s of voltage derivative, which is much more rigorous than a lighting pulse. We also find that elevated transmission lines may have a larger HEMP threat in a small dip angle area. The corresponding data are shown at the end of the paper, which could be useful for relative researchers in pulse injection experiments and reliable evaluation
Three-Dimensional Parameters of the Earth-Impacting CMEs Based on the GCS Model
When a CME arrives at the Earth, it will interact with the magnetosphere, sometimes causing hazardous space weather events. Thus, the study of CMEs which arrived at Earth (hereinafter, Earth-impacting CMEs) has attracted much attention in the space weather and space physics communities. Previous results have suggested that the three-dimensional parameters of CMEs play a crucial role in deciding whether and when they reach Earth. In this work, we use observations from the Solar TErrestrial RElations Observatory (STEREO) to study the three-dimensional parameters of 71 Earth-impacting CMEs from the middle of 2008 to the end of 2012. We find that the majority Earth-impacting CMEs originate from the region of [30S,30N] Ć [40E,40W] on the solar disk; Earth-impacting CMEs are more likely to have a central propagation angle (CPA) no larger than half-angular width, a negative correlation between velocity and acceleration, and propagation time is inversely related to velocity. Based on our findings, we develop an empirical statistical model to forecast the arrival time of the Earth-impacting CME. Also included is a comparison between our model and the aerodynamic drag model
The Solidification of Lead-Zinc Smelting Slag through Bentonite Supported Alkali-Activated Slag Cementitious Material
The proper disposal of Lead-Zinc Smelting Slag (LZSS) having toxic metals is a great challenge for a sustainable environment. In the present study, this challenge was overcome by its solidification/stabilization through alkali-activated cementitious material i.e., Blast Furnace Slag (BFS). The different parameters (water glass modulus, liquid-solid ratio and curing temperature) regarding strength development were optimized through single factor and orthogonal experiments. The LZSS was solidified in samples that had the highest compressive strength (after factor optimization) synthesized with (AASB) and without (AAS) bentonite as an adsorbent material. The results indicated that the highest compressive strength (AAS = 92.89MPa and AASB = 94.57MPa) was observed in samples which were prepared by using a water glass modulus of 1.4, liquid-solid ratio of 0.26 and a curing temperature of 25 °C. The leaching concentrations of Pb and Zn in both methods (sulfuric and nitric acid, and TCLP) had not exceeded the toxicity limits up to 70% addition of LZSS due to a higher compressive strength (>60 MPa) of AAS and AASB samples. While, leaching concentrations in AASB samples were lower than AAS. Conclusively, it was found that the solidification effect depends upon the composition of binder material, type of leaching extractant, nature and concentration of heavy metals in waste. The XRD, FTIR and SEM analyses confirmed that the solidification mechanism was carried out by both physical encapsulation and chemical fixation (dissolved into a crystal structure). Additionally, bentonite as an auxiliary additive significantly improved the solidification/stabilization of LZSS in AASB by enhancing the chemical adsorption capacity of heavy metals
Quantification of Environmental Flow Requirements to Support Ecosystem Services of Oasis Areas: A Case Study in Tarim Basin, Northwest China
Recently, a wide range of quantitative research on the identification of environmental flow requirements (EFRs) has been conducted. However, little focus is given to EFRs to maintain multiple ecosystem services in oasis areas. The present study quantifies the EFRs in oasis areas of Tarim Basin, Xinjiang, Northwest China on the basis of three ecosystem services: (1) maintenance of riverine ecosystem health, (2) assurance of the stability of oasisādesert ecotone and riparian (Tugai) forests, and (3) restoration of oasisādesert ecotone groundwater. The identified consumptive and non-consumptive water requirements are used to quantify and determine the EFRs in Qira oasis by employing the summation and compatibility rules (maximum principle). Results indicate that the annual maximum, medium, and minimum EFRs are 0.752 Ć 108, 0.619 Ć 108, and 0.516 Ć 108 m3, respectively, which account for 58.75%, 48.36%, and 40.29% of the natural river runoff. The months between April and October are identified as the most important periods to maintain the EFRs. Moreover, the water requirement for groundwater restoration of the oasisādesert ecotone accounts for a large proportion, representing 48.27%, 42.32%, and 37.03% of the total EFRs at maximum, medium, and minimum levels, respectively. Therefore, to allocate the integrated EFRs, focus should be placed on the water demand of the desert vegetationās groundwater restoration, which is crucial for maintaining desert vegetation to prevent sandstorms and soil erosion. This work provides a reference to quantify the EFRs of oasis areas in arid regions