24 research outputs found

    3H-Spiperone labels sigma receptors, not dopamine D2 receptors, in a rat and human lymphocytes.

    No full text

    Inhibition of muscarinic receptor and G-protein dependent phosphoinostide metabolism in cerebrocortical membranes from neonatal rats by ethanol

    No full text
    Ethanol exerts an age-specific inhibition of muscarinic-dependent phosphoinositide metabolism in rat brain

    Current Issues in Alcoholism

    No full text
    Occupational Medicine and Rehabilitation Serie

    Interaction of sigma compounds with receptor-stimulated phosphoinositide metabolism in the rat brain.

    No full text
    The effects of 6 sigma compounds on charbacol-stimulated cerebral phosphoinositide metabolism were investigated in rats. Pentazocine was shown to be the most potent inhibitor of the charbacol-stimulated cerebral phosphoinositide turnover

    Interaction of aluminium ions with phosphoinositide metabolism in rat cerebral cortical membranes.

    No full text
    Aluminum (Al) is believed to exert a primary role in the neurotoxicity associated with dialysis encephalopathy and has been suggested to be involved in a number of other neurological disorders, including Alzheimer's disease. Al, complexed with fluoride to form fluoroaluminate (AlF4-), can activate the GTP-binding (G) proteins of the adenylate cyclase and retinal cyclic GMP phosphodiesterase systems. Since an involvement of G-proteins with cerebral phosphoinositide (PtdIns) metabolism has also been suggested, in this study we investigated the interaction of the stable GTP analogue GTP(S), Al salts and NaF with this system. In rat cerebral cortical membranes, GTP(S) dose-dependently stimulated [3H]inositol phosphates ([3H]InsPs) accumulation. This effect was potentiated by carbachol and was partially prevented by the GTP-binding antagonist GDP(S), indicating that CNS muscarinic receptor activation is coupled to PtdIns hydrolysis via putative G-protein(s). GTP(S) stimulation was also inhibited by phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, which is known to exert a negative feedback control on agonist-stimulated PtdIns metabolism. Both Al salts and NaF mimicked the action of GTP(S) in stimulating PtdIns turnover. Their actions were highly synergistic, suggesting that AlF4- could be the active stimulatory species. However, the stimulatory effects of AlCl3 and/or NaF were not potentiated by carbachol and were not inhibited by GDP(S) and PMA, suggesting that separate sites of action might exist for GTP(S) and AlF4-. In the nervous tissue, activation of PtdIns hydrolysis by Al (probably as AlF4-) may be mediated by activating a regulatory G-protein at a location distinct from the GTP-binding site or by a direct stimulation of phospholipase C
    corecore