5 research outputs found
Kinetics and mechanism of gas-phase thermolysis using headspace-gas chromatographic analysis
Headspace gas chromatography is employed in order to study the thermal decomposition reaction of gaseous di-tert-butyl peroxide (DTBP) in the 130°C to 160°C temperature range and in the presence of n-hexane as the internal standard and nitrogen as the carrier gas. The reaction exclusively yields acetone and ethane as products. First-order kinetics are observed, including when the surface-to-volume ratio (S/V) of the Pyrex 20-mL vial employed as the reactor is increased by packing it with silanized glass wool. However, a small increase in the rate constant values is observed at each temperature, which supports a heterogeneous surface process in DTBP decomposition. The rate constant's dependence on the homogeneous unimolecular decomposition reaction corresponds to the O-O bond rupture of the DTBP molecule in a stepwise three-stage mechanism. Thus, the relevant question of the participation of a surface catalytic effect in the DTBP gas-phase thermolysis can easily be assessed through the procedure described in this work. In general, this is advantageous for the rapid investigation of the reaction kinetics of volatile compounds at different temperatures.Laboratorio de Estudio de Compuestos Orgánico
Kinetics and mechanism of gas-phase thermolysis using headspace-gas chromatographic analysis
Headspace gas chromatography is employed in order to study the thermal decomposition reaction of gaseous di-tert-butyl peroxide (DTBP) in the 130°C to 160°C temperature range and in the presence of n-hexane as the internal standard and nitrogen as the carrier gas. The reaction exclusively yields acetone and ethane as products. First-order kinetics are observed, including when the surface-to-volume ratio (S/V) of the Pyrex 20-mL vial employed as the reactor is increased by packing it with silanized glass wool. However, a small increase in the rate constant values is observed at each temperature, which supports a heterogeneous surface process in DTBP decomposition. The rate constant's dependence on the homogeneous unimolecular decomposition reaction corresponds to the O-O bond rupture of the DTBP molecule in a stepwise three-stage mechanism. Thus, the relevant question of the participation of a surface catalytic effect in the DTBP gas-phase thermolysis can easily be assessed through the procedure described in this work. In general, this is advantageous for the rapid investigation of the reaction kinetics of volatile compounds at different temperatures.Laboratorio de Estudio de Compuestos Orgánico
Evolutionary and Ecological Characterization of Mayaro Virus Strains Isolated during an Outbreak, Venezuela, 2010
In 2010, an outbreak of febrile illness with arthralgic manifestations was detected at La Estación village, Portuguesa State, Venezuela. The etiologic agent was determined to be Mayaro virus (MAYV), a reemerging South American alphavirus. A total of 77 cases was reported and 19 were confirmed as seropositive. MAYV was isolated from acute-phase serum samples from 6 symptomatic patients. We sequenced 27 complete genomes representing the full spectrum of MAYV genetic diversity, which facilitated detection of a new genotype, designated N. Phylogenetic analysis of genomic sequences indicated that etiologic strains from Venezuela belong to genotype D. Results indicate that MAYV is highly conserved genetically, showing ≈17% nucleotide divergence across all 3 genotypes and 4% among genotype D strains in the most variable genes. Coalescent analyses suggested genotypes D and L diverged ≈150 years ago and genotype diverged N ≈250 years ago. This virus commonly infects persons residing near enzootic transmission foci because of anthropogenic incursions. [ABSTRACT FROM AUTHOR] Copyright of Emerging Infectious Diseases is the property of Centers for Disease Control & Prevention (CDC) and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder\u27s express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract