15 research outputs found

    KDEON WK-11: A short antipseudomonal peptide with promising potential

    Get PDF
    The plight of antimicrobial resistance continues to limit the availability of antibiotic treatment effective in combating resistant bacterial infections. Despite efforts made to rectify this issue and minimise its effects on both patients and the wider community, progress in this area remains minimal. Here, we de-novo designed a peptide named KDEON WK-11, building on previous work establishing effective residues and structures active in distinguished antimicrobial peptides such as lactoferrin. We assessed its antimicrobial activity against an array of bacterial strains and identified its most potent effect, against Pseudomonas aeruginosa with an MIC value of 3.12 mu M, lower than its counterparts developed with similar residues and chain lengths. We then determined its anti-biofilm properties, potential mechanism of action and in vitro cytotoxicity. We identified that KDEON WK-11 had a broad range of antimicrobial activity and specific capabilities to fight Pseudomonas aeruginosa with low in vitro cytotoxicity and promising potential to express anti-lipopolysaccharide qualities, which could be exploited to expand its properties into an anti-sepsis agent

    Human aldehyde dehydrogenase 3A1 (ALDH3A1): biochemical characterization and immunohistochemical localization in the cornea.

    No full text
    ALDH3A1 (aldehyde dehydrogenase 3A1) is expressed at high concentrations in the mammalian cornea and it is believed that it protects this vital tissue and the rest of the eye against UV-light-induced damage. The precise biological function(s) and cellular distribution of ALDH3A1 in the corneal tissue remain to be elucidated. Among the hypotheses proposed for ALDH3A1 function in cornea is detoxification of aldehydes formed during UV-induced lipid peroxidation. To investigate in detail the biochemical properties and distribution of this protein in the human cornea, we expressed human ALDH3A1 in Sf9 insect cells using a baculovirus vector and raised monoclonal antibodies against ALDH3A1. Recombinant ALDH3A1 protein was purified to homogeneity with a single-step affinity chromatography method using 5'-AMP-Sepharose 4B. Human ALDH3A1 demonstrated high substrate specificity for medium-chain (6 carbons and more) saturated and unsaturated aldehydes, including 4-hydroxy-2-nonenal, which are generated by the peroxidation of cellular lipids. Short-chain aliphatic aldehydes, such as acetaldehyde, propionaldehyde and malondialdehyde, were found to be very poor substrates for human ALDH3A1. In addition, ALDH3A1 metabolized glyceraldehyde poorly and did not metabolize glucose 6-phosphate, 6-phosphoglucono-delta-lactone and 6-phosphogluconate at all, suggesting that this enzyme is not involved in either glycolysis or the pentose phosphate pathway. Immunohistochemistry in human corneas, using the monoclonal antibodies described herein, revealed ALDH3A1 expression in epithelial cells and stromal keratocytes, but not in endothelial cells. Overall, these cumulative findings support the metabolic function of ALDH3A1 as a part of a corneal cellular defence mechanism against oxidative damage caused by aldehydic products of lipid peroxidation. Both recombinant human ALDH3A1 and the highly specific monoclonal antibodies described in the present paper may prove to be useful in probing biological functions of this protein in ocular tissue

    Ozone Exposure of Macrophages Induces an Alveolar Epithelial Chemokine Response through IL-1α

    No full text
    Ozone is known to produce an acute influx of neutrophils, and alveolar epithelial cells can secrete chemokines and modulate inflammatory processes. However, direct exposure of alveolar epithelial cells and macrophages to ozone (O3) produces little chemokine response. To determine if cell–cell interactions might be responsible, we investigated the effect of alveolar macrophage–conditioned media after ozone exposure (MO3CM) on alveolar epithelial cell chemokine production. Serum-free media were conditioned by exposing a rat alveolar macrophage cell line NR8383 to ozone for 1 hour. Ozone stimulated secretion of IL-1α, IL-1β, and IL-18 from NR8383 cells, but there was no secretion of chemokines or TNF-α. Freshly isolated type II cells were cultured, so as to express the biological markers of type I cells, and these cells are referred to as type I–like cells. Type I–like cells were exposed to diluted MO3CM for 24 hours, and this conditioned medium stimulated secretion of cytokine-induced neutrophil chemattractant-1 (CXCL1) and monocyte chemoattractant protein-1 (CCL2). Secretion of these chemokines was inhibited by the IL-1 receptor antagonist. Although both recombinant IL-1α and IL-1β stimulated alveolar epithelial cells to secrete chemokines, recombinant IL-1α was 100-fold more potent than IL-1β. Furthermore, neutralizing anti-rat IL-1α antibodies inhibited the secretion of chemokines by alveolar epithelial cells, whereas neutralizing anti-rat IL-1β antibodies had no effect. These observations indicate that secretion of IL-1α from macrophages stimulates alveolar epithelial cells to secrete chemokines that can elicit an inflammatory response

    Alveolar Epithelial Cells Secrete Chemokines in Response to IL-1β and Lipopolysaccharide but Not to Ozone

    No full text
    Ozone exposure produces acute inflammation and neutrophil influx in the distal lung. Alveolar epithelial cells cover a large surface area, secrete chemokines, and may initiate or modify the inflammatory response. The effect of ozone on chemokine production by these cells has not been defined. Isolated rat type II cells were cultured in different conditions to express the morphologic appearance and biochemical markers for the type I and the type II cell phenotypes. These cells were exposed to ozone at an air/liquid interface. The type I–like cells were more susceptible to injury than the type II cells and showed signs of injury at exposure levels of 100 ppb ozone for 60 min. Both phenotypes showed evidence of lipid peroxidation after ozone exposure as measured by 8-isoprostane production, but neither phenotype secreted increased amounts of MIP-2 (CXCL3), CINC-1 (CXCL1), or MCP-1 (CCL2) in response to ozone. Both cell phenotypes secreted MIP-2 and MCP-1 in response to IL-1β or lipopolysaccharide, but there was no priming or synergy with ozone. It is likely that the inflammatory response to ozone in the alveolar compartment is not due to the direct effect of ozone on epithelial cells

    Differentiated human alveolar epithelial cells and reversibility of their phenotype in vitro

    No full text
    Cultures of differentiating fetal human type II cells have been available for many years. However, studies with differentiated adult human type II cells are limited. We used a published method for type II cell isolation and developed primary culture systems for maintenance of differentiated adult human alveolar epithelial cells for in vitro studies. Human type II cells cultured on Matrigel (basolateral access) or a mixture of Matrigel and rat tail collagen (apical access) in the presence of keratinocyte growth factor, isobutylmethylxanthine, 8-bromo-cyclicAMP, and dexamethasone (KIAD) expressed the differentiated type II cell phenotype as measured by the expression of surfactant protein (SP)-A, SP-B, SP-C, and fatty acid synthase and their morphologic appearance. These cells contain lamellar inclusion bodies and have apical microvilli. In both systems the cells appear well differentiated. In the apical access system, type II cell differentiation markers initially decreased and then recovered over 6 d in culture. Lipid synthesis was also increased by the addition of KIAD. In contrast, type II cells cultured on rat tail collagen (or tissue culture plastic) slowly lose their lamellar inclusions and expression of the surfactant proteins and increase the expression of type I cell markers. The expression of the phenotypes is regulated by the culture conditions and is, in part, reversible in vitro
    corecore