71 research outputs found

    Towards Large-scale Masked Face Recognition

    Full text link
    During the COVID-19 coronavirus epidemic, almost everyone is wearing masks, which poses a huge challenge for deep learning-based face recognition algorithms. In this paper, we will present our \textbf{championship} solutions in ICCV MFR WebFace260M and InsightFace unconstrained tracks. We will focus on four challenges in large-scale masked face recognition, i.e., super-large scale training, data noise handling, masked and non-masked face recognition accuracy balancing, and how to design inference-friendly model architecture. We hope that the discussion on these four aspects can guide future research towards more robust masked face recognition systems.Comment: the top1 solution for ICCV2021-MFR challeng

    The Porous Carbon Nanotube-Cellulose Papers as Current Collector and Electrode for Lithium Ion Battery and Supercapacitor Applications

    Get PDF
    Lithium ion batteries (LIB) and supercapacitors (electric double-layer capacitors (EDLCs) and lithium ion capacitors (LIC)) are the most energy storage service for mobile application. Lithium ion batteries are currently the most popular type of battery for powering portable electronic devices and are growing in popularity for defense, automotive and aerospace applications. The investigation of supercapacitors (SCs) has also achieved significant progresses. Although they have shown remarkable commercial successes, the electrodes and their constituent materials are still the subject of intensive research. Our research focused on a new type of carbon nanotube-cellulose composite materials as current collector of LIBs and as electrodes of SCs for improving and enhancing the energy/power density and cyclic performance of them. Carbon nanotubes (CNTs) have been widely used as conductive agent for both anodes and cathodes to replace super carbon black to satisfy the multifunctional requirements for LIBs

    An Intronic Signal for Alternative Splicing in the Human Genome

    Get PDF
    An important level at which the expression of programmed cell death (PCD) genes is regulated is alternative splicing. Our previous work identified an intronic splicing regulatory element in caspase-2 (casp-2) gene. This 100-nucleotide intronic element, In100, consists of an upstream region containing a decoy 3′ splice site and a downstream region containing binding sites for splicing repressor PTB. Based on the signal of In100 element in casp-2, we have detected the In100-like sequences as a family of sequence elements associated with alternative splicing in the human genome by using computational and experimental approaches. A survey of human genome reveals the presence of more than four thousand In100-like elements in 2757 genes. These In100-like elements tend to locate more frequent in intronic regions than exonic regions. EST analyses indicate that the presence of In100-like elements correlates with the skipping of their immediate upstream exons, with 526 genes showing exon skipping in such a manner. In addition, In100-like elements are found in several human caspase genes near exons encoding the caspase active domain. RT-PCR experiments show that these caspase genes indeed undergo alternative splicing in a pattern predicted to affect their functional activity. Together, these results suggest that the In100-like elements represent a family of intronic signals for alternative splicing in the human genome

    Transparent Conducting Thin Film Preparation of Carbon Nanotube

    Get PDF
    Transparent conducting films have a wide range of applications in the fields of flat panel displays, solar cells, and touch panels for their both good conductivity and light transmittance. Carbon nanotubes (CNTs) transparent conducting film has become a potential alternative for next-generation transparent conducting film systems owing to high conductivity, light transmittance and flexibility. The multiwalled carbon nanotubes (MWCNTs) conductive liquid was prepared by dispersing MWCNTs in alcohol through ultrasonic and high-speed shearing process with an addition of carbon nanotube alcohol dispersant (TNADIS) as the dispersant. The transparent conducting film was fabricated on polyethylene terephthalate (PET) transparent film by spin-coating process. The film was used as interlayer between the electrode and the separator to improve electrochemical performance of lithium-sulfur (Li-S) batteries

    Motion-I2V: Consistent and Controllable Image-to-Video Generation with Explicit Motion Modeling

    Full text link
    We introduce Motion-I2V, a novel framework for consistent and controllable image-to-video generation (I2V). In contrast to previous methods that directly learn the complicated image-to-video mapping, Motion-I2V factorizes I2V into two stages with explicit motion modeling. For the first stage, we propose a diffusion-based motion field predictor, which focuses on deducing the trajectories of the reference image's pixels. For the second stage, we propose motion-augmented temporal attention to enhance the limited 1-D temporal attention in video latent diffusion models. This module can effectively propagate reference image's feature to synthesized frames with the guidance of predicted trajectories from the first stage. Compared with existing methods, Motion-I2V can generate more consistent videos even at the presence of large motion and viewpoint variation. By training a sparse trajectory ControlNet for the first stage, Motion-I2V can support users to precisely control motion trajectories and motion regions with sparse trajectory and region annotations. This offers more controllability of the I2V process than solely relying on textual instructions. Additionally, Motion-I2V's second stage naturally supports zero-shot video-to-video translation. Both qualitative and quantitative comparisons demonstrate the advantages of Motion-I2V over prior approaches in consistent and controllable image-to-video generation. Please see our project page at https://xiaoyushi97.github.io/Motion-I2V/.Comment: Project page: https://xiaoyushi97.github.io/Motion-I2V
    • …
    corecore