5 research outputs found

    The crystal structure of 2-oxo-2H-chromen-4-yl acetate, C11H8O4

    Get PDF
    C11H8O4, monoclinic, P21/c (no. 14), a = 4.5947(2) Å, b = 10.5414(3) Å, c = 19.1611(7) Å, β = 94.084(2)°, V = 925.70(6) Å3, Z = 4, Rgt(F) = 0.0376, wRref(F 2) = 0.1109,T = 200(2) K.CCDC no.: 190638

    The crystal structure of 2-oxo-2H-chromen-4-yl acetate, C11H8O4

    Get PDF
    C11H8O4, monoclinic, P21/c (no. 14), a = 4.5947(2) Å, b = 10.5414(3) Å, c = 19.1611(7) Å, β = 94.084(2)°, V = 925.70(6) Å3, Z = 4, Rgt(F) = 0.0376, wRref(F 2) = 0.1109,T = 200(2) K.CCDC no.: 190638

    Synthesis and biological evaluation of bis-N2, N2′-(4-hydroxycoumarin-3-yl) ethylidene]-2, 3-dihydroxysuccinodihydrazides

    Get PDF
    A series of N2,N2′-bis[4-hydroxycoumarin-3-yl)ethylidene]-2,3-dihydroxysuccino-hydrazides, containing 4-hydroxycoumarin, hydrazine and tartaric acid moieties, have been prepared and examined for possible biological activity. Several of these compounds exhibit promising HIV-1 integrase inhibition (IC50 = 3.5 μM), and anti-T. brucei (32% viability) and anti-mycobacterial (Visual MIC90 = 15.63 μM) activity

    Exploring intermolecular contacts in multi-substituted benzaldehyde derivatives: X-ray, Hirshfeld surface and lattice energy analyses

    No full text
    Crystal structures of six benzaldehyde derivatives (1–6) have been determined and their supramolecular networks were established by an X-ray crystallographic study. The study has shown that the compounds are linked by various intermolecular interactions such as weak C–H⋯O hydrogen bonding, and C–H⋯π, π–π and halogen bonding interactions which consolidate and strengthen the formation of these molecular assemblies. The carbonyl group generates diverse synthons in 1–6 via intermolecular C–H⋯O hydrogen bonds. An interplay of C–H⋯O hydrogen bonds, and C–H⋯π and π–π stacking interactions facilitates the formation of multi-dimensional supramolecular networks. Crystal packings in 4 and 5 are further generated by type I halogen⋯halogen bonding interactions. The differences in crystal packing are represented by variation of substitution positions in the compounds. Structure 3 is isomorphous with 4 but there are subtle differences in their crystal packing
    corecore