53 research outputs found

    Lymph Node Transplantation and Its Immunological Significance in Animal Models

    Get PDF
    Lymph nodes (LNs) are distributed all over the body and whatever the site consists of the same cell populations. However, there are great differences between LN from different draining areas. For example, in mesenteric LN, homing molecules, for example, CCR9 and α4β7 integrin, were induced and cytokines, for example, IL-4, were produced on higher levels compared to peripheral LN. To study the immunological functions of LN, LN transplantation was performed in some specific areas using different animal models. Many groups investigated not only the regeneration of transplanted LN but also the induction of immune responses or tolerance after transplantation. Existing differences between LNs were still detectable after transplantation. Most important, stromal cells of the LN were identified as responsible for these differences. They survive during regeneration and were shown to reconstruct not only the structure of the new LN but also the microenvironment

    Mimicking acute airway tissue damage using femtosecond laser nanosurgery in airway organoids

    Get PDF
    Airway organoids derived from adult murine epithelial cells represent a complex 3D in vitro system mimicking the airway epithelial tissue’s native cell composition and physiological properties. In combination with a precise damage induction via femtosecond laser-based nanosurgery, this model might allow for the examination of intra- and intercellular dynamics in the course of repair processes with a high spatio-temporal resolution, which can hardly be reached using in vivo approaches. For characterization of the organoids’ response to single or multiple-cell ablation, we first analyzed overall organoid survival and found that airway organoids were capable of efficiently repairing damage induced by femtosecond laser-based ablation of a single to ten cells within 24 h. An EdU staining assay further revealed a steady proliferative potential of airway organoid cells. Especially in the case of ablation of five cells, proliferation was enhanced within the first 4 h upon damage induction, whereas ablation of ten cells was followed by a slight decrease in proliferation within this time frame. Analyzing individual trajectories of single cells within airway organoids, we found an increased migratory behavior in cells within close proximity to the ablation site following the ablation of ten, but not five cells. Bulk RNA sequencing and subsequent enrichment analysis revealed the differential expression of sets of genes involved in the regulation of epithelial repair, distinct signaling pathway activities such as Notch signaling, as well as cell migration after laser-based ablation. Together, our findings demonstrate that organoid repair upon ablation of ten cells involves key processes by which native airway epithelial wound healing is regulated. This marks the herein presented in vitro damage model suitable to study repair processes following localized airway injury, thereby posing a novel approach to gain insights into the mechanisms driving epithelial repair on a single-cell level

    Composition of the Intestinal Microbiota Determines the Outcome of Virus-Triggered Colitis in Mice

    Get PDF
    The intestinal microbiota is a complex ecosystem implicated in host health and disease. Inflammatory bowel disease (IBD) is a multifactorial chronic disorder of the gastrointestinal mucosa. Even though the exact mechanisms are still unknown, the intestinal microbiota is crucial in IBD development. We previously showed that murine norovirus (MNV) induces colitis in the Il10-deficient (Il10(-/-)) mouse model of IBD in a microbiota-dependent manner. Thus, in this study we analyzed whether distinct minimal bacterial consortia influence the outcome of MNV-triggered colitis in Il10(-/-) mice. Gnotobiotic Il10(-/-) mice associated with Oligo-Mouse-Microbiota 12 (OMM12) or Altered Schaedler Flora (ASF) developed little to no inflammatory lesions in the colon and cecum. MNV infection exacerbated colitis severity only in ASF-colonized mice, but not in those associated with OMM12. Four weeks after MNV infection, inflammatory lesions in ASF-colonized Il10(-/-) mice were characterized by epithelial hyperplasia, infiltration of inflammatory cells, and increased barrier permeability. Co-colonization of ASF-colonized Il10(-/-) mice with segmented filamentous bacteria (SFB) abolished MNV-induced colitis, whereas histopathological scores in SFB-OMM12-co-colonized mice stayed unchanged. Moreover, SFB only colonized mice associated with ASF. The SFB-mediated protective effects in ASF-colonized mice involved enhanced activation of intestinal barrier defense mechanisms and mucosal immune responses in the chronic and acute phase of MNV infection. SFB colonization strengthened intestinal barrier function by increasing expression of tight junction proteins, antimicrobial peptides and mucus. Furthermore, SFB colonization enhanced the expression of pro-inflammatory cytokines such as Tnf alpha, Il1 beta, and Il12 alpha, as well as the expression of the regulatory cytokine Tgf beta. Altogether, our results showed that MNV-triggered colitis depends on the microbial context

    CD14 and ALPK1 Affect Expression of Tight Junction Components and Proinflammatory Mediators upon Bacterial Stimulation in a Colonic 3D Organoid Model

    Get PDF
    Cd14 and Alpk1 both encode pathogen recognition receptors and are known candidate genes for affecting severity in inflammatory bowel diseases. CD14 acts as a coreceptor for bacterial lipopolysaccharide (LPS), while ALPK1 senses ADP-D-glycero-beta-D-manno-heptose, a metabolic intermediate of LPS biosynthesis. Intestinal barrier integrity can be influenced by CD14, whereas to date, the role of ALPK1 in maintaining barrier function remains unknown. We used colon-derived 3D organoids, first characterised for growth, proliferation, stem cell markers, and expression of tight junction (TJ) components using qPCR and immunohistochemistry. They showed characteristic crypt stem cells, apical shedding of dead cells, and TJ formation. Afterwards, organoids of different genotypes (WT, Il10-/-, Cd14-/-, and Alpk1-/-) were then stimulated with either LPS or Escherichia coli Nissle 1917 (EcN). Gene expression and protein levels of cytokines and TJ components were analysed. WT organoids increased expression of Tnfα and tight junction components. Cd14-/- organoids expressed significantly less Tnfα and Ocln after LPS stimulation than WT organoids but reacted similarly to WT organoids after EcN stimulation. In contrast, compared to WT, Alpk1-/- organoids showed decreased expression of different TJ and cytokine genes in response to EcN but not LPS. However, Western blotting revealed an effect of ALPK1 on TJ protein levels. These findings demonstrate that Cd14, but not Alpk1, alters the response to LPS stimulation in colonic epithelial cells, whereas Alpk1 is involved in the response upon bacterial challenge. © 2020 Pascal Brooks et al

    Investigation of Colonic Regeneration via Precise Damage Application Using Femtosecond Laser-Based Nanosurgery

    Get PDF
    Organoids represent the cellular composition of natural tissue. So called colonoids, organoids derived from colon tissue, are a good model for understanding regeneration. However, next to the cellular composition, the surrounding matrix, the cell–cell interactions, and environmental factors have to be considered. This requires new approaches for the manipulation of a colonoid. Of key interest is the precise application of localized damage and the following cellular reaction. We have established multiphoton imaging in combination with femtosecond laser-based cellular nanosurgery in colonoids to ablate single cells in the colonoids’ crypts, the proliferative zones, and the differentiated zones. We observed that half of the colonoids recovered within six hours after manipulation. An invagination of the damaged cell and closing of the structure was observed. In about a third of the cases of targeted crypt damage, it caused a stop in crypt proliferation. In the majority of colonoids ablated in the crypt, the damage led to an increase in Wnt signalling, indicated via a fluorescent lentiviral biosensor. qRT-PCR analysis showed increased expression of various proliferation and Wnt-associated genes in response to damage. Our new model of probing colonoid regeneration paves the way to better understand organoid dynamics on a single cell level. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Establishment of a guided, in vivo, multi-channel, abdominal, tissue imaging approach

    Get PDF
    Novel tools in humane animal research should benefit the animal as well as the experimentally obtained data. Imaging technologies have proven to be versatile and also in accordance with the demands of the 3 R principle. However, most imaging technologies are either limited by the target organs, number of repetitive imaging sessions, or the maximal resolution. We present a technique-, which enables multicolor abdominal imaging on a tissue level. It is based on a small imaging fiber endoscope, which is guided by a second commercial endoscope. The imaging fiber endoscope allows the distinction of four different fluorescence channels. It has a size of less than 1 mm and can approximately resolve single cells. The imaging fiber was successfully tested on cells in vitro, excised organ tissue, and in mice in vivo. Combined with neural networks for image restauration, high quality images from various abdominal organs of interest were realized. The second endoscope ensured a precise placement of the imaging fiber in vivo. Our approach of guided tissue imaging in vivo, combined with neuronal networks for image restauration, permits the acquisition of fluorescence-microscope like images with minimal invasive surgery in vivo. Therefore, it is possible to extend our approach to repetitive imaging sessions. The cost below 30 thousand euros allows an establishment of this approach in various scenarios. © 2020, The Author(s)

    Grimace scale assessment during Citrobacter rodentium inflammation and colitis development in laboratory mice

    Get PDF
    IntroductionBacterial infections and chronic intestinal inflammations triggered by genetic susceptibility, environment or an imbalance in the intestinal microbiome are usually long-lasting and painful diseases in which the development and maintenance of these various intestinal inflammations is not yet fully understood, research is still needed. This still requires the use of animal models and is subject to the refinement principle of the 3Rs, to minimize suffering or pain perceived by the animals. With regard to this, the present study aimed at the recognition of pain using the mouse grimace scale (MGS) during chronic intestinal colitis due to dextran sodium sulfate (DSS) treatment or after infection with Citrobacter rodentium.MethodsIn this study 56 animals were included which were divided into 2 experimental groups: 1. chronic intestinal inflammation (n = 9) and 2. acute intestinal inflammation (with (n = 23) and without (n = 24) C. rodentium infection). Before the induction of intestinal inflammation in one of the animal models, mice underwent an abdominal surgery and the live MGS from the cage side and a clinical score were assessed before (bsl) and after 2, 4, 6, 8, 24, and 48 hours.ResultsThe highest clinical score as well as the highest live MGS was detected 2 hours after surgery and almost no sign of pain or severity were detected after 24 and 48 hours. Eight weeks after abdominal surgery B6-Il4/Il10-/- mice were treated with DSS to trigger chronic intestinal colitis. During the acute phase as well as the chronic phase of the experiment, the live MGS and a clinical score were evaluated. The clinical score increased after DSS administration due to weight loss of the animals but no change of the live MGS was observed. In the second C57BL/6J mouse model, after infection with C. rodentium the clinical score increased but again, no increased score values in the live MGS was detectable.DiscussionIn conclusion, the live MGS detected post-operative pain, but indicated no pain during DSS-induced colitis or C. rodentium infection. In contrast, clinical scoring and here especially the weight loss revealed a decreased wellbeing due to surgery and intestinal inflammation

    Intestinal Organoids in Colitis Research: Focusing on Variability and Cryopreservation

    Get PDF
    In recent years, stem cell-derived organoids have become a cell culture standard that is widely used for studying various scientific issues that were previously investigated through animal experiments and using common tumor cell lines. After their initial hype, concerns regarding their standardization have been raised. Here, we aim to provide some insights into our experience in standardizing murine colonic epithelial organoids, which we use as a replacement method for research on inflammatory bowel disease. Considering good scientific practice, we examined various factors that might challenge the design and outcome of experiments using these organoids. First, to analyze the impact of antibiotics/antimycotics, we performed kinetic experiments using ZellShield® and measured the gene expression levels of the tight junction markers Ocln, Zo-1, and Cldn4, the proliferation marker Ki67, and the proinflammatory cytokine Tnfα. Because we found no differences between cultivations with and without ZellShield®, we then performed infection experiments using the probiotic Escherichia coli Nissle 1917 as an already established model setup to analyze the impact of technical, interexperimental, and biologic replicates. We demonstrate that interexperimental differences pose the greatest challenge for reproducibility and explain our strategies for addressing these differences. Additionally, we conducted infection experiments using freshly isolated and cryopreserved/thawed organoids and found that cryopreservation influenced the experimental outcome during early passages. Formerly cryopreserved colonoids exhibited a premature appearance and a higher proinflammatory response to bacterial stimulation. Therefore, we recommend analyzing the growth characteristics and reliability of cryopreserved organoids before to their use in experiments together with conducting several independent experiments under standardized conditions. Taken together, our findings demonstrate that organoid culture, if standardized, constitutes a good tool for reducing the need for animal experiments and might further improve our understanding of, for example, the role of epithelial cells in inflammatory bowel disease development

    Epithelial restitution in 3D - Revealing biomechanical and physiochemical dynamics in intestinal organoids via fs laser nanosurgery

    Get PDF
    Intestinal organoids represent a three-dimensional cell culture system mimicking the mammalian intestine. The application of single-cell ablation for defined wounding via a femtosecond laser system within the crypt base allowed us to study cell dynamics during epithelial restitution. Neighboring cells formed a contractile actin ring encircling the damaged cell, changed the cellular aspect ratio, and immediately closed the barrier. Using traction force microscopy, we observed major forces at the ablation site and additional forces on the crypt sides. Inhibitors of the actomyosin-based mobility of the cells led to the failure of restoring the barrier. Close to the ablation site, high-frequency calcium flickering and propagation of calcium waves occured that synchronized with the contraction of the epithelial layer. We observed an increased signal and nuclear translocation of YAP-1. In conclusion, our approach enabled, for the first time, to unveil the intricacies of epithelial restitution beyond in vivo models by employing precise laser-induced damage in colonoids

    Postoperative Severity Assessment in Sheep

    Get PDF
    Introduction: Sheep are frequently used in translational surgical orthopedic studies. Naturally, a good pain management is mandatory for animal welfare, although it is also important with regard to data quality. However, methods for adequate severity assessment, especially considering pain, are rather rare regarding large animal models. Therefore, in the present study, accompanying a surgical pilot study, telemetry and the Sheep Grimace Scale (SGS) were used in addition to clinical scoring for severity assessment after surgical interventions in sheep. Methods: Telemetric devices were implanted in a first surgery subcutaneously into four German black-headed mutton ewes (4-5 years, 77-115 kg). After 3-4 weeks of recovery, sheep underwent tendon ablation of the left M. infraspinatus. Clinical scoring and video recordings for SGS analysis were performed after both surgeries, and the heart rate (HR) and general activity were monitored by telemetry. Results: Immediately after surgery, clinical score and HR were slightly increased, and activity was decreased in individual sheep after both surgeries. The SGS mildly elevated directly after transmitter implantation but increased to higher levels after tendon ablation immediately after surgery and on the following day. Conclusion: In summary, SGS- and telemetry-derived data were suitable to detect postoperative pain in sheep with the potential to improve individual pain recognition and postoperative management, which consequently contributes to refinement
    corecore