53 research outputs found

    A review of in vivo animal studies in retinal prosthesis research

    Get PDF
    Background: The development of a functional retinal prosthesis for acquired blindness is a great challenge. Rapid progress in the field over the last 15years would not have been possible without extensive animal experimentation pertaining to device design and fabrication, biocompatibility, stimulation parameters and functional responses. This paper presents an overview of in vivo animal research related to retinal prosthetics, and aims to summarize the relevant studies. Methods: A Pubmed search of the English language literature was performed. The key search terms were: retinal implant, retinal prosthesis, artificial vision, rat, rabbit, cat, dog, sheep, pig, minipig. In addition a manual search was performed based on references quoted in the articles retrieved through Pubmed. Results: We identified 50 articles relevant to in vivo animal experimentation directly related to the development of a retinal implant. The highest number of publications related to the cat (n = 18). Conclusion: The contribution of animal models to the development of retinal prosthetic devices has been enormous, and has led to human feasibility studies. Grey areas remain regarding long-term tissue-implant interactions, biomaterials, prosthesis design and neural adaptation. Animals will continue to play a key role in this rapidly evolving fiel

    Cell Type-Specific Roles of NF-ÎşB Linking Inflammation and Thrombosis

    Get PDF
    The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses

    Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project

    Get PDF
    Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project has been established in 2016. It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, ship-borne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data

    Laboratory as a Service (LaaS): a Model for Developing and Implementing Remote Laboratories as Modular Components

    Get PDF
    The increasing adoption of remote laboratories in education along with the shift from eLearning 2.0 towards eLearning 3.0, have demanded several considerations in their implementation and delivery format. In response to these needs, this contribution introduces a novel model, Laboratory as a Service (LaaS), for developing remote laboratories as independent component modules and implementing them as a set of loosely-coupled services to be consumed with a high level of abstraction and virtualization. LaaS aims to tackle the common concurrent challenges in remote laboratories developing and implementation such as inter-institutional sharing, interoperability with other heterogeneous systems, coupling with heterogeneous services and learning objects, difficulty of developing, and standardization. Beyond the academic context, LaaS will facilitate the incorporation of remote laboratories in the ecosystem of the ubiquitous smart things surrounding us, which increases everyday with the approaching Web of Things (WoT) and artificial intelligence era. This, in turn, will create a breeding ground for online control, experimentation, and discovery—in either formal or informal context and with neither temporal nor geographical constraints

    Measuring and interpreting platelet-leukocyte aggregates

    No full text
    Platelets, besides their specialised role in haemostasis and atherothrombosis, actively modulate innate and adaptive immune responses with crucial roles in immune surveillance, inflammation and host defence during infection. An important prerequisite for platelet-mediated changes of immune functions involves direct engagement with different types of leukocytes. Indeed, increased platelet-leukocyte aggregates (PLAs) within the circulation and/or locally at the site of inflammation represent markers of many thrombo-inflammatory diseases, such as cardiovascular diseases, acute lung injury, renal and cerebral inflammation. Therefore, measurement of PLAs could provide an attractive and easily accessible prognostic and/or diagnostic tool for many diseases. To measure PLAs in different (patho-)physiological settings in human and animal models flow cytometric and microscopic approaches have been applied. These techniques represent complementary tools to study different aspects relating to the involvement of leukocyte subtypes and molecules, as well as location of PLAs within tissues, dynamics of their interactions and/or dynamic changes in leukocyte and platelet behaviour. This review summarises various approaches to measure and interpret PLAs and discusses potential experimental factors influencing platelet binding to leukocytes. Furthermore, we summarise insights gained from studies regarding the underlying mechanism of platelet-leukocyte interactions and discuss implications of these interactions in health and disease

    Automated image analysis of stained cytospins to quantify Schwann cell purity and proliferation.

    No full text
    In response to injury, adult Schwann cells (SCs) re-enter the cell cycle, change their expression profile, and exert repair functions important for wound healing and the re-growth of axons. While this phenotypical instability of SCs is essential for nerve regeneration, it has also been implicated in cancer progression and de-myelinating neuropathies. Thus, SCs became an important research tool to study the molecular mechanisms involved in repair and disease and to identify targets for therapeutic intervention. A high purity of isolated SC cultures used for experimentation must be demonstrated to exclude that novel findings are derived from a contaminating fibroblasts population. In addition, information about the SC proliferation status is an important parameter to be determined in response to different treatments. The evaluation of SC purity and proliferation, however, usually depends on the time consuming, manual assessment of immunofluorescence stainings or comes with the sacrifice of a large amount of SCs for flow cytometry analysis. We here show that rat SC culture derived cytospins stained for SC marker SOX10, proliferation marker EdU, intermediate filament vimentin and DAPI allowed the determination of SC identity and proliferation by requiring only a small number of cells. Furthermore, the CellProfiler software was used to develop an automated image analysis pipeline that quantified SCs and proliferating SCs from the obtained immunofluorescence images. By comparing the results of total cell count, SC purity and SC proliferation rate between manual counting and the CellProfiler output, we demonstrated applicability and reliability of the established pipeline. In conclusion, we here combined the cytospin technique, a multi-colour immunofluorescence staining panel, and an automated image analysis pipeline to enable the quantification of SC purity and SC proliferation from small cell aliquots. This procedure represents a solid read-out to simplify and standardize the quantification of primary SC culture purity and proliferation

    Quantitative and Functional Assessment of the Influence of Routinely Used Cryopreservation Media on Mononuclear Leukocytes for Medical Research

    No full text
    Quantitative and functional analysis of mononuclear leukocyte populations is an invaluable tool to understand the role of the immune system in the pathogenesis of a disease. Cryopreservation of mononuclear cells (MNCs) is routinely used to guarantee similar experimental conditions. Immune cells react differently to cryopreservation, and populations and functions of immune cells change during the process of freeze–thawing. To allow for a setup that preserves cell number and function optimally, we tested four different cryopreservation media. MNCs from 15 human individuals were analyzed. Before freezing and after thawing, the distribution of leukocytes was quantified by flow cytometry. Cultured cells were stimulated using lipopolysaccharide, and their immune response was quantified by flow cytometry, quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). Ultimately, the performance of the cryopreservation media was ranked. Cell recovery and viability were different between the media. Cryopreservation led to changes in the relative number of monocytes, T cells, B cells, and their subsets. The inflammatory response of MNCs was altered by cryopreservation, enhancing the basal production of inflammatory cytokines. Different cryopreservation media induce biases, which needs to be considered when designing a study relying on cryopreservation. Here, we provide an overview of four different cryopreservation media for choosing the optimal medium for a specific task
    • …
    corecore