126 research outputs found

    Synergistic growth factor microenvironments

    Get PDF
    Growth factors (GF) are remarkably powerful signalling molecules that orchestrate developmental biology. GFs are currently used in medjcal applications with limited success but it is clear that if their potential can be harnessed for biomedicine then they could underpin the discipline of regenerative medicine. However, while we understand that biology uses cell-secreted growth factors tethered to the ECM, biologists typically employ GFs in soluble format at high concentrations. When used in vivo, this causes off-target, unwanted effects, which severely limits their use. There is a vast amount of literature dealing with material systems that control the delivery of GFs. However, it was soon observed that GFs could be more effectively presented bound to surfaces from a solid-phase state rather than in soluble form, recapitulating the way the extracellular matrix (ECM) binds GFs. In parallel, evidence was found that within the ECM, GFs can actually work in cooperation with integrins and that this produced ehnaced GF signalling due to the crosstalk between both receptors. Recently this knowledge was used to engineer microenvironments that target simultaneous integrin and GF receptor engagement seeking to maximise GF effects in vitro (e.g. in terms of stem cell differentiation) but also tissue repair in vivo (e.g. bone regeneration and wound healing). This feature article introduces the concept of synergistic GF/integrin signalling and then introduces GF delivery systems that were key in the development of more advanced synergistic growth factor microenvironments

    Designing stem cell niches for differentiation and self-renewal

    Get PDF
    Mesenchymal stem cells, characterized by their ability to differentiate into skeletal tissues and self-renew, hold great promise for both regenerative medicine and novel therapeutic discovery. However, their regenerative capacity is retained only when in contact with their specialized microenvironment, termed the stem cell niche. Niches provide structural and functional cues that are both biochemical and biophysical, stem cells integrate this complex array of signals with intrinsic regulatory networks to meet physiological demands. Although, some of these regulatory mechanisms remain poorly understood or difficult to harness with traditional culture systems. Biomaterial strategies are being developed that aim to recapitulate stem cell niches, by engineering microenvironments with physiological-like niche properties that aim to elucidate stem cell-regulatory mechanisms, and to harness their regenerative capacity in vitro. In the future, engineered niches will prove important tools for both regenerative medicine and therapeutic discoveries

    Cell migration within confined sandwich-like nanoenvironments

    Get PDF
    Aim: We introduced sandwich-like cultures to provide cell migration studies with 4 representative nano-bio-environments where both ventral and dorsal cell receptors are activated. Methods: We have investigated different nano-environmental conditions by changing the protein coating (fibronectin, vitronectin) and/or materials (using polymers that adsorb proteins in qualitatively different conformations) of this sandwich system to show their specific role in cell migration. Results: Here we show that cell migration within sandwich cultures greatly differs from 2D cultures and shares some similarities with migration within 3D environments. Beyond differences in cell morphology and migration, dorsal stimulation promotes cell remodeling of the ECM over simple ventral 12 receptor activation in traditional 2D cultures.</p

    PLLA/ZnO nanocomposites: dynamic surfaces to harness cell differentiation

    Get PDF
    This work investigates the effect of the sequential availability of ZnO nanoparticles, (nanorods of ∼40 nm) loaded within a degradable poly(lactic acid) (PLLA) matrix, in cell differentiation. The system constitutes a dynamic surface, in which nanoparticles are exposed as the polymer matrix degrades. ZnO nanoparticles were loaded into PLLA and the system was measured at different time points to characterise the time evolution of the physicochemical properties, including wettability and thermal properties. The micro and nanostructure were also investigated using AFM, SEM and TEM images. Cellular experiments with C2C12 myoblasts show that cell differentiation was significantly enhanced on ZnO nanoparticles—loaded PLLA, as the polymer degrades and the availability of nanoparticles become more apparent, whereas the release of zinc within the culture medium was negligible. Our results suggest PLLA/ZnO nanocomposites can be used as a dynamic system where nanoparticles are exposed during degradation, activating the material surface and driving cell differentiation

    Current approaches for modulation of the nanoscale interface in the regulation of cell behavior

    Get PDF
    Regulation of cell behavior in response to nanoscale features has been the focus of much research in recent years and the successful generation of nanoscale features capable of mimicking the natural nanoscale interface has been of great interest in the field of biomaterials research. In this review, we discuss relevant nanofabrication techniques and how they are combined with bioengineering applications to mimic the natural extracellular matrix (ECM) and create valuable nanoscale interfaces

    Comparative study of osteogenic activity of multilayers made of synthetic and biogenic polyelectrolytes

    Get PDF
    Polyelectrolyte multilayer (PEM) coatings on biomaterials are applied to tailor adhesion, growth, and function of cells on biomedical implants. Here, biogenic and synthetic polyelectrolytes (PEL) are used for layer-by-layer assembly to study the osteogenic activity of PEM with human osteosarcoma MG-63 cells in a comparative manner. Formation of PEM is achieved with biogenic PEL fibrinogen (FBG) and poly-l-lysine (PLL) as well as biotinylated chondroitin sulfate (BCS) and avidin (AVI), while poly(allylamine hydrochloride) (PAH) and polystyrene sulfonate (PSS) represent a fully synthetic PEM used as a reference system here. Surface plasmon resonance measurements show highest layer mass for FBG/PLL and similar for PSS/PAH and BCS/AVI systems, while water contact angle and zeta potential measurements indicate larger differences for PSS/PAH and FBG/PLL but not for BCS/AVI multilayers. All PEM systems support cell adhesion and growth and promote osteogenic differentiation as well. However, FBG/PLL layers are superior regarding MG-63 cell adhesion during short-term culture, while the BCS/AVI system increases alkaline phosphatase activity in long-term culture. Particularly, a multilayer system based on affinity interaction like BCS/AVI may be useful for controlled presentation of biotinylated growth factors to promote growth and differentiation of cells for biomedical applications

    Sensing the difference: the influence of anisotropic cues on cell behavior

    Get PDF
    From tissue morphogenesis to homeostasis, cells continuously experience and respond to physical, chemical and biological cues commonly presented in gradients. In this article we focus our discussion on the importance of nano/micro topographic cues on cell activity, and the role of anisotropic milieus play on cell behavior, mostly adhesion and migration. We present the need to study physiological gradients in vitro. To do this, we review different cell migration mechanisms and how adherent cells react to the presence of complex tissue-like environments and cell-surface stimulation in 2D and 3D (e.g. ventral/dorsal anisotropy)

    The plot thickens: the emerging role of matrix viscosity in cell mechanotransduction

    Get PDF
    Cell mechanotransduction is an area of intense research focus. Until now, very limited tools have existed to study how cells respond to changes in the extracellular matrix beyond, for example, mechanical deformation studies and twisting cytometry. However, emerging are a range of elastic, viscoelastic and even purely viscous materials that deform and dissipate on cellular length and timescales. This article reviews developments in these materials, typically translating from 2D model surfaces to 3D microenvironments and explores how cells interact with them. Specifically, it focuses on emerging concepts such as the molecular clutch model, how different extracellular matrix proteins engage the clutch under viscoelastic‐stress relaxation conditions, and how mechanotransduction can drive transcriptional control through regulators such as YAP/TAZ

    Minor chemistry changes alter surface hydration to control fibronectin adsorption and assembly into nanofibrils

    Get PDF
    Fibronectin (FN) is a large glycoprotein which links and transmits signals between the cell's cytoskeleton and the extracellular matrix. FN organization into fibrils and then fibrillogenesis can be induced with the right substrate, such as poly(ethyl acrylate) (PEA), on which FN becomes extended. Interestingly, the almost identical polymer poly(methyl acrylate) (PMA), which has one less methylene bridge (─CH2─), does not cause fibrillogenesis. To investigate the difference in FN behavior on PEA and PMA, the two substrates are modeled using ethyl acrylate (EA) and methyl acrylate (MA) functionalized self‐assembled monolayers (SAMs). It is confirmed experimentally that the EA and MA SAMs exhibit a similar behavior in vitro to the polymers in terms of fibronectin fibrillogenesis, domain exposure, and cell adhesion. All‐atom molecular dynamics simulations of the FNIII 9‐10 domains interacting with each SAM show the adsorption of these two domains on EA SAMs and no adsorption on MA SAMs. Consistently, the experiments show that FN fibrillogenesis takes place on EA SAMs but not on MA SAMs. It is found that the extra methylene group in the EA headgroup leads to more motion within the headgroup that results in a markedly less dense hydration layer, which facilitates FN fibrillogenesis
    corecore