189 research outputs found

    A sterile neutrino at MiniBooNE and IceCube

    Full text link
    We discuss the possibility that a sterile neutrino of mass around 50 MeV slightly mixed with the muon flavor may be the origin of the MiniBooNE anomaly. We show that its production in the atmosphere in a fraction of kaon decays would imply an excess of contained showers at IceCube from down-going and near-horizontal directions.Comment: 12 pages, talk presented at II Russian-Spanish Congress: Particle and Nuclear Physics at all Scales, Saint-Petersburg, October 1-4, 201

    A minimal Little Higgs model

    Full text link
    We discuss a Little Higgs scenario that introduces below the TeV scale just the two minimal ingredients of these models, a vectorlike T quark and a singlet component (implying anomalous couplings) in the Higgs field, together with a pseudoscalar singlet \eta. In the model, which is a variation of Schmaltz's simplest Little Higgs model, all the extra vector bosons are much heavier than the T quark. In the Yukawa sector the global symmetry is approximate, implying a single large coupling per flavour, whereas in the scalar sector it is only broken at the loop level. We obtain the one-loop effective potential and show that it provides acceptable masses for the Higgs h and for the singlet \eta with no need for an extra \mu term. We find that m_\eta can be larger than m_h/2, which would forbid the (otherwise dominant) decay mode h -> \eta\eta.Comment: 16 pages. References added, fine tuning analysis included. Version to appear in PR

    Extra Higgs bosons in ttbar production at the LHC

    Full text link
    The top quark has a large Yukawa coupling with the Higgs boson. In the usual extensions of the standard model the Higgs sector includes extra scalars, which also tend to couple strongly with the top quark. Unlike the Higgs, these fields have a natural mass above 2m_t, so they could introduce anomalies in ttbar production at the LHC. We study their effect on the ttbar invariant mass distribution at sqrt{s}=7 TeV. We focus on the bosons (H,A) of the minimal SUSY model and on the scalar field (r) associated to the new scale f in Little Higgs (LH) models. We show that in all cases the interference with the standard amplitude dominates over the narrow-width contribution. As a consequence, the mass difference between H and A or the contribution of an extra T-quark loop in LH models become important effects in order to determine if these fields are observable there. We find that a 1 fb^{-1} luminosity could probe the region tan beta \le 3 of SUSY and v/(sqrt{2}f) \ge 0.3 in LH models.Comment: 18 pages, version to appear in PR

    Heavy neutrino decays at MiniBooNE

    Full text link
    It has been proposed that a sterile neutrino \nu_h with m_h \approx 50 MeV and a dominant decay mode (\nu_h -> \nu\gamma) may be the origin of the experimental anomaly observed at LSND. We define a particular model that could also explain the MiniBooNE excess consistently with the data at other neutrino experiments (radiative muon capture at TRIUMF, T2K, or single photon at NOMAD). The key ingredients are (i) its long lifetime (\tau_h\approx 3-7x10^{-9} s), which introduces a 1/E dependence with the event energy, and (ii) its Dirac nature, which implies a photon preferably emitted opposite to the beam direction and further reduces the event energy at MiniBooNE. We show that these neutrinos are mostly produced through electromagnetic interactions with nuclei, and that T2K observations force BR(\nu_h -> \nu_\tau\gamma) \le 0.01 \approx BR(\nu_h -> \nu_\mu\gamma). The scenario implies then the presence of a second sterile neutrino \nu_{h'} which is lighter, longer lived and less mixed with the standard flavors than \nu_h. Since such particle would be copiously produced in air showers through (\nu_h -> \nu_{h'}\gamma) decays, we comment on the possible contamination that its photon-mediated elastic interactions with matter could introduce in dark matter experiments.Comment: 18 pages, typo in Eq.(6) correcte

    Heavy-neutrino decays at neutrino telescopes

    Full text link
    It has been recently proposed that a sterile neutrino \nu_h of mass m_h=40--80 MeV, mixing |U_{\mu h}|^2=10^{-3}--10^{-2}, lifetime \tau_h \lsim 10^{-9} s, and a dominant decay mode (\nu_h \to \nu_\mu \gamma) could be the origin of the experimental anomalies observed at LSND, KARMEN and MiniBooNE. Such a particle would be abundant inside air showers, as it can be produced in kaon decays (K -> \nu_h \mu, K_L -> \nu_h \pi \mu). We use the Z-moment method to evaluate its atmospheric flux and the frequency of its decays inside neutrino telescopes. We show that the \nu_h would imply around 10^4 contained showers per year inside a 0.03 km^3 telescope like ANTARES or the DeepCore in IceCube. These events would have a characteristic energy and zenith-angle distribution (E_\nu = 0.1--10 TeV and \theta < 90^o), which results from a balance between the reach of the heavy neutrino (that disfavors low energies) and a sizeable production rate and decay probability. The standard background from contained neutrino events (\nu_e N \to e X and neutral-current interactions of high inelasticity) is 100 times smaller. Therefore, although it may be challenging from an experimental point of view, a search at ANTARES and IceCube could confirm this heavy-neutrino possibility.Comment: 10 pages. Comments on constraints from muon capture and cosmology added, minor corrections, references added. Version to appear as a Rapid Communication in PR

    A new physics interpretation of the IceCube data

    Full text link
    IceCube has recently observed 37 events of TeV-PeV energies. The angular distribution, with a strong preference for downgoing directions, the spectrum, and the small muon to shower ratio in the data can not be accommodated assuming standard interactions of atmospheric neutrinos. We obtain an excellent fit, however, if a diffuse flux of ultrahigh energy (cosmogenic) neutrinos experiences collisions where only a small fraction of the energy is transferred to the target nucleon. We show that consistent models of TeV gravity or other non-Wilsonian completions of the standard model provide cross sections with these precise features. An increased statistics could clearly distinguish our scenario from the one assumed by IceCube (a diffuse flux of astrophysical neutrinos with a E^{-2} spectrum) and establish the need for new physics in the interpretation of the data.Comment: 13 pages, version to appear in Astroparticle Physic

    Gluon excitations in t tbar production at hadron colliders

    Full text link
    We argue that a relatively light massive gluon with mass <= 1 TeV, small purely axial couplings to light quarks and sizable vector and axial couplings to the top quark can reproduce the large forward-backward asymmetry observed at the Tevatron without conflicting with the t tbar and the dijet invariant mass distributions measured at the Tevatron and the LHC. We show that realistic Higgsless models with warped extra dimensions naturally fulfil all the necessary ingredients to realize this scenario. While current data is unable to discover or exclude these heavy gluons with masses 850 GeV, they should be observed at the (7 TeV) LHC with a luminosity of the order of 300 pb^{-1}.Comment: 16 pages, 6 figure

    Black hole gas in TeV-gravity models

    Full text link
    In a plasma at temperature close to the fundamental scale a small fraction of particles will experience transplanckian collisions that may result in microscopic black holes (BHs). We study the dynamics of a system (a black hole gas) defined by radiation at a given temperature coupled to a distribution of BHs of different mass. Our analysis includes the production of BHs in photon-photon collisions, BH evaporation, the absorption of radiation, collisions of two BHs to give a larger one, and the effects of the expansion. We find that the system may follow two different generic paths depending on the initial temperature of the plasma.Comment: 4 pages. Talk given by M.B. in ERE-200

    Black hole gas in the early universe

    Full text link
    We consider the early universe at temperatures close to the fundamental scale of gravity (M_D << M_Planck) in models with extra dimensions. At such temperatures a small fraction of particles will experience transplanckian collisions that may result in microscopic black holes (BHs). BHs colder than the environment will gain mass, and as they grow their temperature drops further. We study the dynamics of a system (a black hole gas) defined by radiation at a given temperature coupled to a distribution of BHs of different mass. Our analysis includes the production of BHs in photon-photon collisions, BH evaporation, the absorption of radiation, collisions of two BHs to give a larger one, and the effects of the expansion. We show that the system may follow two different generic paths depending on the initial temperature of the plasma.Comment: 17 pages, version to appear in JCA
    corecore