559 research outputs found

    Combining cluster observables and stacked weak lensing to probe dark energy: Self-calibration of systematic uncertainties

    Full text link
    We develop a new method of combining cluster observables (number counts and cluster-cluster correlation functions) and stacked weak lensing signals of background galaxy shapes, both of which are available in a wide-field optical imaging survey. Assuming that the clusters have secure redshift estimates, we show that the joint experiment enables a self-calibration of important systematic errors including the source redshift uncertainty and the cluster mass-observable relation, by adopting a single population of background source galaxies for the lensing analysis. It allows us to use the relative strengths of stacked lensing signals at different cluster redshifts for calibrating the source redshift uncertainty, which in turn leads to accurate measurements of the mean cluster mass in each bin. In addition, our formulation of stacked lensing signals in Fourier space simplifies the Fisher matrix calculations, as well as the marginalization over the cluster off-centering effect, the most significant uncertainty in stacked lensing. We show that upcoming wide-field surveys yield stringent constraints on cosmological parameters including dark energy parameters, without any priors on nuisance parameters that model systematic uncertainties. Specifically, the stacked lensing information improves the dark energy FoM by a factor of 4, compared to that from the cluster observables alone. The primordial non-Gaussianity parameter can also be constrained with a level of f_NL~10. In this method, the mean source redshift is well calibrated to an accuracy of 0.1 in redshift, and the mean cluster mass in each bin to 5-10% accuracies, which demonstrates the success of the self-calibration of systematic uncertainties from the joint experiment. (Abridged)Comment: 29 pages, 17 figures, 6 tables, accepted for publication in Phys. Rev.

    X-ray bright active galactic nuclei in massive galaxy clusters III: New insights into the triggering mechanisms of cluster AGN

    Full text link
    We present the results of a new analysis of the X-ray selected Active Galactic Nuclei (AGN) population in the vicinity of 135 of the most massive galaxy clusters in the redshift range of 0.2 < z < 0.9 observed with Chandra. With a sample of more than 11,000 X-ray point sources, we are able to measure, for the first time, evidence for evolution in the cluster AGN population beyond the expected evolution of field AGN. Our analysis shows that overall number density of cluster AGN scales with the cluster mass as ∼M500−1.2\sim M_{500}^{-1.2}. There is no evidence for the overall number density of cluster member X-ray AGN depending on the cluster redshift in a manner different than field AGN, nor there is any evidence that the spatial distribution of cluster AGN (given in units of the cluster overdensity radius r_500) strongly depends on the cluster mass or redshift. The M−1.2±0.7M^{-1.2 \pm 0.7} scaling relation we measure is consistent with theoretical predictions of the galaxy merger rate in clusters, which is expected to scale with the cluster velocity dispersion, σ\sigma, as ∼σ−3 \sim \sigma^{-3} or ∼M−1\sim M^{-1}. This consistency suggests that AGN in clusters may be predominantly triggered by galaxy mergers, a result that is further corroborated by visual inspection of Hubble images for 23 spectroscopically confirmed cluster member AGN in our sample. A merger-driven scenario for the triggering of X-ray AGN is not strongly favored by studies of field galaxies, however, suggesting that different mechanisms may be primarily responsible for the triggering of cluster and field X-ray AGN.Comment: 21 Pages, 8 figures, 5 tables. Submitted to MNRAS. Comments are welcome, and please request Steven Ehlert for higher resolution figure

    Weighing neutrinos using high redshift galaxy luminosity functions

    Get PDF
    Laboratory experiments measuring neutrino oscillations, indicate small mass differences between different mass eigenstates of neutrinos. The absolute mass scale is however not determined, with at present the strongest upper limits coming from astronomical observations rather than terrestrial experiments. The presence of massive neutrinos suppresses the growth of perturbations below a characteristic mass scale, thereby leading to a decreased abundance of collapsed dark matter halos. Here we show that this effect can significantly alter the predicted luminosity function (LF) of high redshift galaxies. In particular we demonstrate that a stringent constraint on the neutrino mass can be obtained using the well measured galaxy LF and our semi-analytic structure formation models. Combining the constraints from the Wilkinson Microwave Anisotropy Probe 7 year (WMAP7) data with the LF data at z = 4, we get a limit on the sum of the masses of 3 degenerate neutrinos \Sigma m_\nu < 0.52 eV at the 95 % CL. The additional constraints using the prior on Hubble constant strengthens this limit to \Sigma m_\nu < 0.29 eV at the 95 % CL. This neutrino mass limit is a factor of order 4 improvement compared to the constraint based on the WMAP7 data alone, and as stringent as known limits based on other astronomical observations. As different astronomical measurements may suffer from different set of biases, the method presented here provides a complementary probe of \Sigma m_\nu . We suggest that repeating this exercise on well measured luminosity functions over different redshift ranges can provide independent and tighter constraints on \Sigma m_\nu .Comment: 14 pages, 7 figures, submitted to PR

    Cosmology and astrophysics from relaxed galaxy clusters - IV: Robustly calibrating hydrostatic masses with weak lensing

    Full text link
    This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses provides a measurement of the combined bias of X-ray hydrostatic masses due to both astrophysical and instrumental sources. Assuming a fixed cosmology, and within a characteristic radius (r_2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 +/- 9% (stat) +/- 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. In accordance with predictions from hydro simulations for the most massive, relaxed clusters, our results disfavor strong, tens-of-percent departures from hydrostatic equilibrium at these radii. In addition, we find a mean concentration of the sample measured from lensing data of c_200 = 3.0−1.8+4.43.0_{-1.8}^{+4.4}. Anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30--50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Omega_m from the cluster gas mass fraction.Comment: 13 pages. Submitted to MNRAS. Comments welcom

    Thermodynamic Profiles of Galaxy Clusters from a Joint X-ray/SZ Analysis

    Get PDF
    We jointly analyze Bolocam Sunyaev-Zeldovich (SZ) effect and Chandra X-ray data for a set of 45 clusters to derive gas density and temperature profiles without using spectroscopic information. The sample spans the mass and redshift range 3×1014M⊙≤M500≤25×1014M⊙3 \times 10^{14} M_{\odot} \le M_{500} \le 25 \times 10^{14} M_{\odot} and 0.15≤z≤0.890.15\le z \le 0.89. We define cool-core (CC) and non-cool core (NCC) subsamples based on the central X-ray luminosity, and 17/45 clusters are classified as CC. In general, the profiles derived from our analysis are found to be in good agreement with previous analyses, and profile constraints beyond r500r_{500} are obtained for 34/45 clusters. In approximately 30% of the CC clusters our analysis shows a central temperature drop with a statistical significance of >3σ>3\sigma; this modest detection fraction is due mainly to a combination of coarse angular resolution and modest S/N in the SZ data. Most clusters are consistent with an isothermal profile at the largest radii near r500r_{500}, although 9/45 show a significant temperature decrease with increasing radius. The sample mean density profile is in good agreement with previous studies, and shows a minimum intrinsic scatter of approximately 10% near 0.5×r5000.5 \times r_{500}. The sample mean temperature profile is consistent with isothermal, and has an intrinsic scatter of approximately 50% independent of radius. This scatter is significantly higher compared to earlier X-ray-only studies, which find intrinsic scatters near 10%, likely due to a combination of unaccounted for non-idealities in the SZ noise, projection effects, and sample selection.Comment: 42 pages, 52 figure

    X-ray Bright Active Galactic Nuclei in Massive Galaxy Clusters II: The Fraction of Galaxies Hosting Active Nuclei

    Full text link
    We present a measurement of the fraction of cluster galaxies hosting X-ray bright Active Galactic Nuclei (AGN) as a function of clustercentric distance scaled in units of r500r_{500}. Our analysis employs high quality Chandra X-ray and Subaru optical imaging for 42 massive X-ray selected galaxy cluster fields spanning the redshift range of 0.2<z<0.70.2 < z < 0.7. In total, our study involves 176 AGN with bright (R<23R <23) optical counterparts above a 0.5−8.00.5-8.0 keV flux limit of 10−14erg cm−2 s−110^{-14} \rm{erg} \ \rm{cm}^{-2} \ \rm{s}^{-1}. When excluding central dominant galaxies from the calculation, we measure a cluster-galaxy AGN fraction in the central regions of the clusters that is ∼3\sim 3 times lower that the field value. This fraction increases with clustercentric distance before becoming consistent with the field at ∼2.5r500\sim 2.5 r_{500}. Our data exhibit similar radial trends to those observed for star formation and optically selected AGN in cluster member galaxies, both of which are also suppressed near cluster centers to a comparable extent. These results strongly support the idea that X-ray AGN activity and strong star formation are linked through their common dependence on available reservoirs of cold gas.Comment: 9 Pages, 4 Figures, accepted for publication in MNRAS, please contact Steven Ehlert ([email protected]) with any querie

    CO and C_2 Absorption Toward W40 IRS 1a

    Get PDF
    The H II region W40 harbors a small group of young, hot stars behind roughly 9 magnitudes of visual extinction. We have detected gaseous carbon monoxide (CO) and diatomic carbon (C_2) in absorption toward the star W40 IRS 1a. The 2-0 R0, R1, and R2 lines of 12CO at 2.3 micron were measured using the CSHELL on the NASA IR Telescope Facility (with upper limits placed on R3, R4, and R5) yielding an N_CO of (1.1 +/- 0.2) x 10^18 cm^-2. Excitation analysis indicates T_kin > 7 K. The Phillips system of C_2 transitions near 8775 Ang. was measured using the Kitt Peak 4-m telescope and echelle spectrometer. Radiative pumping models indicate a total C_2 column density of (7.0 +/- 0.4) x 10^14 cm^-2, two excitation temperatures (39 and 126 K), and a total gas density of n ~ 250 cm^-3. The CO ice band at 4.7 micron was not detected, placing an upper limit on the CO depletion of delta < 1 %. We postulate that the sightline has multiple translucent components and is associated with the W40 molecular cloud. Our data for W40 IRS 1a, coupled with other sightlines, shows that the ratio of CO/C_2 increases from diffuse through translucent environs. Finally, we show that the hydrogen to dust ratio seems to remain constant from diffuse to dense environments, while the CO to dust ratio apparently does not.Comment: To appear in The Astrophysical Journal 17 pages total, 5 figures Also available at http://casa.colorado.edu/~shuping/research/w40/w40.htm

    Cosmology and Astrophysics from Relaxed Galaxy Clusters II: Cosmological Constraints

    Full text link
    We present cosmological constraints from measurements of the gas mass fraction, fgasf_{gas}, for massive, dynamically relaxed galaxy clusters. Our data set consists of Chandra observations of 40 such clusters, identified in a comprehensive search of the Chandra archive, as well as high-quality weak gravitational lensing data for a subset of these clusters. Incorporating a robust gravitational lensing calibration of the X-ray mass estimates, and restricting our measurements to the most self-similar and accurately measured regions of clusters, significantly reduces systematic uncertainties compared to previous work. Our data for the first time constrain the intrinsic scatter in fgasf_{gas}, (7.4±2.3)(7.4\pm2.3)% in a spherical shell at radii 0.8-1.2 r2500r_{2500}, consistent with the expected variation in gas depletion and non-thermal pressure for relaxed clusters. From the lowest-redshift data in our sample we obtain a constraint on a combination of the Hubble parameter and cosmic baryon fraction, h3/2Ωb/Ωm=0.089±0.012h^{3/2}\Omega_b/\Omega_m=0.089\pm0.012, that is insensitive to the nature of dark energy. Combined with standard priors on hh and Ωbh2\Omega_b h^2, this provides a tight constraint on the cosmic matter density, Ωm=0.27±0.04\Omega_m=0.27\pm0.04, which is similarly insensitive to dark energy. Using the entire cluster sample, extending to z>1z>1, we obtain consistent results for Ωm\Omega_m and interesting constraints on dark energy: ΩΛ=0.65−0.22+0.17\Omega_\Lambda=0.65^{+0.17}_{-0.22} for non-flat Λ\LambdaCDM models, and w=−0.98±0.26w=-0.98\pm0.26 for flat constant-ww models. Our results are both competitive and consistent with those from recent CMB, SNIa and BAO data. We present constraints on models of evolving dark energy from the combination of fgasf_{gas} data with these external data sets, and comment on the possibilities for improved fgasf_{gas} constraints using current and next-generation X-ray observatories and lensing data. (Abridged)Comment: 25 pages, 14 figures, 8 tables. Accepted by MNRAS. Code and data can be downloaded from http://www.slac.stanford.edu/~amantz/work/fgas14/ . v2: minor fix to table 1, updated bibliograph
    • …
    corecore