27 research outputs found

    CACNA1C risk variant affects reward responsiveness in healthy individuals

    Get PDF
    The variant at rs1006737 in the L-type voltage-gated calcium channel (alpha 1c subunit) CACNA1C gene is reliably associated with both bipolar disorder and schizophrenia. We investigated whether this risk variant affects reward responsiveness because reward processing is one of the central cognitive-motivational domains implicated in both disorders. In a sample of 164 young, healthy individuals, we show a dose-dependent response, where the rs1006737 risk genotype was associated with blunted reward responsiveness, whereas discriminability did not significantly differ between genotype groups. This finding suggests that the CACNA1C risk locus may have a role in neural pathways that facilitate value representation for rewarding stimuli. Impaired reward processing may be a transdiagnostic phenotype of variation in CACNA1C that could contribute to anhedonia and other clinical features common to both affective and psychotic disorders

    Array-CGH and multipoint FISH to decode complex chromosomal rearrangements

    Get PDF
    BACKGROUND: Recently, several high-resolution methods of chromosome analysis have been developed. It is important to compare these methods and to select reliable combinations of techniques to analyze complex chromosomal rearrangements in tumours. In this study we have compared array-CGH (comparative genomic hybridization) and multipoint FISH (mpFISH) for their ability to characterize complex rearrangements on human chromosome 3 (chr3) in tumour cell lines. We have used 179 BAC/PAC clones covering chr3 with an approximately 1 Mb resolution to analyze nine carcinoma lines. Chr3 was chosen for analysis, because of its frequent rearrangements in human solid tumours. RESULTS: The ploidy of the tumour cell lines ranged from near-diploid to near-pentaploid. Chr3 locus copy number was assessed by interphase and metaphase mpFISH. Totally 53 chr3 fragments were identified having copy numbers from 0 to 14. MpFISH results from the BAC/PAC clones and array-CGH gave mainly corresponding results. Each copy number change on the array profile could be related to a specific chromosome aberration detected by metaphase mpFISH. The analysis of the correlation between real copy number from mpFISH and the average normalized inter-locus fluorescence ratio (ANILFR) value detected by array-CGH demonstrated that copy number is a linear function of parameters that include the variable, ANILFR, and two constants, ploidy and background normalized fluorescence ratio. CONCLUSION: In most cases, the changes in copy number seen on array-CGH profiles reflected cumulative chromosome rearrangements. Most of them stemmed from unbalanced translocations. Although our chr3 BAC/PAC array could identify single copy number changes even in pentaploid cells, mpFISH provided a more accurate analysis in the dissection of complex karyotypes at high ploidy levels

    Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy

    Get PDF
    Background Copy number variants (CNVs) have been linked to neurodevelopmental disorders such as intellectual disability (ID), autism, epilepsy and psychiatric disease. There are few studies of CNVs in patients with both ID and epilepsy. Methods We evaluated the range of rare CNVs found in 80 Welsh patients with ID or developmental delay (DD), and childhood-onset epilepsy. We performed molecular cytogenetic testing by single nucleotide polymorphism array or microarray-based comparative genome hybridisation. Results 8.8 % (7/80) of the patients had at least one rare CNVs that was considered to be pathogenic or likely pathogenic. The CNVs involved known disease genes (EHMT1, MBD5 and SCN1A) and imbalances in genomic regions associated with neurodevelopmental disorders (16p11.2, 16p13.11 and 2q13). Prompted by the observation of two deletions disrupting SCN1A we undertook further testing of this gene in selected patients. This led to the identification of four pathogenic SCN1A mutations in our cohort. Conclusions We identified five rare de novo deletions and confirmed the clinical utility of array analysis in patients with ID/DD and childhood-onset epilepsy. This report adds to our clinical understanding of these rare genomic disorders and highlights SCN1A mutations as a cause of ID and epilepsy, which can easily be overlooked in adults

    Experimental approaches for identifying schizophrenia risk genes

    No full text
    Schizophrenia is a severe, debilitating and common psychiatric disorder, which directly affects approximately 1% of the population worldwide. Although previous studies have unequivocally shown that schizophrenia has a strong genetic component, our understanding of its pathophysiology remains limited. The precise genetic architecture of schizophrenia remains elusive and is likely to be complex. It is believed that multiple genetic variants, with each contributing a modest effect on disease risk, interact with environmental factors resulting in the phenotype. In this chapter, we summarise the main molecular genetic approaches that have been utilised in identifying susceptibility genes for schizophrenia and discuss the advantages and disadvantages of each approach. First, we detail the findings of linkage mapping in pedigrees (affected families), which analyse the co-segregation of polymorphic genetic markers with disease phenotype. Second, the contribution of targeted and genome-wide association studies, which compare differential allelic frequencies in schizophrenia cases and matched controls, is presented. Third, we discuss about the identification of susceptibility genes through analysis of chromosomal structural variation (gains and losses of genetic material). Lastly, we introduce the concept of re-sequencing, where the entire genome/exome is sequenced both in affected and unaffected individuals. This approach has the potential to provide a clarified picture of the majority of the genetic variation underlying disease pathogenesis

    Genomic microarrays in the spotlight

    No full text
    Microarray-based comparative genomic hybridization (array-CGH) has emerged as a revolutionary platform, enabling the high-resolution detection of DNA copy number aberrations. In this article we outline the use and limitations of genomic clones, cDNA clones and PCR products as targets for genomic microarray construction. Furthermore, the applications and future aspects of these arrays for DNA copy number analysis in research and diagnostics, epigenetic profiling and gene annotation are discussed. These recent developments of genomic microarrays mark only the beginning of a new generation of high-resolution and high-throughput tools for genetic analysis

    Replication study implicates COMT val158met polymorphism as a modulator of probabilistic reward learning

    No full text
    Previous studies suggest that a single nucleotide polymorphism in the catechol-O-methyltransferase (COMT) gene (val158met) may modulate reward-guided decision making in healthy individuals. The polymorphism affects dopamine catabolism and thus modulates prefrontal dopamine levels, which may lead to variation in individual responses to risk and reward. We previously showed, using tasks that index reward responsiveness (measured by responses bias towards reinforced stimuli) and risk taking (measured by the Balloon Analogue Risk Task), that COMT met homozygotes had increased reward responsiveness and, thus, an increased propensity to seek reward. In this study, we sought to replicate these effects in a larger, independent cohort of Caucasian UK university students and staff with similar demographic characteristics (n = 101; 54 females, mean age: 22.2 years). Similarly to our previous study, we observed a significant trial × COMT genotype interaction (P = 0.047; η2 = 0.052), which was driven by a significant effect of COMT on the incremental acquisition of response bias [response bias at block 3 − block 1 (met/met > val/val: P = 0.028) and block 3 − block 2 (met/met > val/val: P = 0.007)], suggesting that COMT met homozygotes demonstrated higher levels of reward responsiveness by the end of the task. However, we failed to see main effects of COMT genotype on overall response bias or risk-seeking behaviour. These results provide additional evidence that prefrontal dopaminergic variation may have a role in reward responsiveness, but not risk-seeking behaviour. Our findings may have implications for neuropsychiatric disorders characterized by clinical deficits in reward processing such as anhedonia

    Development of NF2 gene specific, strictly sequence defined diagnostic microarray for deletion detection

    No full text
    Neurofibromatosis type 2 (NF2) is an autosomal dominant cancer syndrome caused by the biallelic inactivation of the neurofibromin 2 tumor suppressor gene ( NF2). Current molecular diagnostic methods for NF2 involve the detection of point mutations and/or microdeletions across the 100-kb locus from 22q12. Despite the fact that NF2 gene inactivating deletions occur in 25-30% of NF2 patients, the available approaches for high-resolution and high-throughput detection of deletions are underdeveloped. This need for improved methodology for gene copy number analysis is especially apparent when compared to a variety of methods available for accurate detection of point mutations. The microarray-based form of comparative genomic hybridization has been previously applied in the high-resolution analysis of gene copy number variation across large genomic regions. In this study we apply a PCR-based, strictly sequence-defined, repeat-free approach for the preparation of a diagnostic microarray for the detection of disease-causing deletions in the NF2 gene. The methodology is based on the preselection of target DNA by excluding redundant sequence within the NF2 locus using bioinformatics. This approach allows a significant increase in the resolution of deletion detection. The current average resolution of analysis across the NF2 locus is 23 kb. Therefore this NF2 gene-specific microarray is the first high-resolution tool for detection of diagnostically significant gene copy number aberrations. This microarray should now be applied in the analysis of an extensive series of NF2 patients, and hence we would like to call for such samples

    DNA copy-number analysis of the 22q11 deletion-syndrome region using array-CGH with genomic and PCR-based targets

    No full text
    Deletions and duplications of genomic segments commonly cause developmental disorders. The resolution and efficiency in diagnosing such gene-dosage alterations can be drastically increased using microarray-based comparative genomic hybridization (array-CGH). However, array-CGH currently relies on spotting genomic clones as targets, which confers severe limitations to the approach including resolution of analysis and reliable gene-dosage assessment of regions with high content of redundant sequences. To improve the methodology for analysis, we compared the use of genomic clones, repeat-free pools of amplified genomic DNA and cDNAs (single and pooled) as targets on the array. For this purpose, we chose q11.2 locus on chromosome 22 as a testing ground. Microdeletions at 22q11 cause birth defects collectively described as the DiGeorge/velocardiofacial syndrome. The majority of patients present 3 Mb typical deletions. Here, we report the construction of a gene-dosage array, covering 6 Mb of 22q11 and including the typically deleted region. We hybridized DNA from six DiGeorge syndrome patients to the array, and show that as little as 11.5 kb non-redundant, repeat-free PCR-generated sequence can be used for reliable detection of hemizygous deletions. By extrapolation, this would allow analysis of the genome with an average resolution of 25 kb. In the case of cDNAs our results indicate that 3.5 kb sequence is necessary for accurate identification of haploid/diploid dosage alterations. Thus, for regions rich in redundant sequences and repeats, such as 22q11, a specifically tailored array-CGH approach is good for gene copy number profiling

    Detection of copy number changes at the NF1 locus with improved high-resolution array CGH

    No full text
    Neurofibromatosis type 1 (NF1) is a common autosomal dominant disease caused by various types of mutations in the NF1 gene. We have previously developed a locus-specific DNA microarray for detection of copy number changes at the NF1 locus by comparative genomic hybridization (CGH) analysis. The original array contains 183 probes pooled from 444 polymerase chain reaction (PCR) products. In the current work, we have used 493 probes derived from single PCR products (200–998 bp in size) to construct a higher resolution array with a smaller average probe size for molecular diagnosis of NF1. This has improved the average resolution from 12.6 kb in the previous array to 4.5 kb in the current version. The performance of the newly constructed microarray was validated with 14 well-characterized NF1 mutations for CGH analysis. These mutations represent deletions from ∼7 kb to over 2 Mb in size. Using this array, we examined a total of 55 NF1 patients for copy number changes at the NF1 locus, detecting deletions in four of them. These results demonstrate that a locus-specific microarray constructed from single PCR products can efficiently detect copy number changes at the NF1 locus, providing a simple method for the molecular diagnosis of NF1
    corecore