32 research outputs found

    Enzymatic Synthesis of 3-O-Acylbetulinic Acid Derivatives and Prediction of Acylation Using Response Surface Methodology and Artificial Neural Network Analyses

    Get PDF
    In this study, 3-O-acyl-betulinic acid derivatives were synthesized by the reaction of betulinic acid with various anhydrides using lipase as a biocatalyst in organic solvents. The reaction between betulinic acid and phthalic anhydride was chosen as the model reaction for optimization studies. The immobilized lipase from Candida antarctica (Novozym 435) was selected as a biocatalyst. The effects of different reaction parameters were investigated and optimized in the model reaction using one-variable-ata- time technique for the first time. Optimum conditions to produce 3-O-phthalylbetulinic acid up to 61.8% were observed at a reaction time of 24 hours; amount of enzyme, 176 mg; betulinic acid to phthalic anhydride molar ratio of 1:1; amount of celite, 170 mg and 6 mg of K2CO3 in a mixture of n-hexane-chloroform (1:1, v/v) as organic solvent at 55'C. The response surface methodology (RSM), based on a five-level, four-variable central composite rotatable design (CCRD), was employed to evaluate the effects of synthesis parameters of the model reaction. Using the RSM analysis, it was observed that the maximum yield of 3-O-phthalyl-betulinic acid (65.8%) could be obtained using 145.6 mg of enzyme, reaction temperature of 53.9°C, reaction time of 20.3 hours and betulinic acid to phthalic anhydride molar ratio of 1:1.11. The actual experimental value obtained was at 64.7%. Artificial neural network (ANN) was successfully developed to model and predict the enzymatic synthesis of 3-O-phthalyl-betulinic acid. The network consists of an input layer, a hidden layer and an output layer. Inputs for the network were reaction time, reaction temperature, enzyme amount and substrate molar ratio, while the output was percentage isolated yield of ester. Four different training algorithms, belonging to two classes, namely gradient descent and Levenberg-Marquardt, were used to train ANN. The best results were obtained from the quick propagation algorithm (QP) with 4-9-1 topology. Based on the ANN analysis, the optimal conditions to obtain the highest yield were 148.3 mg enzyme, reaction temperature of 53.1°C, reaction time of 20.3 hours and betulinic acid to phthalic anhydride molar ratio of 1:1.24. The predicted and actual yields were 64.9 and 64.3%, respectively. In this work, the ANN and RSM analysis were investigated on the enzymatic synthesis of 3-O-phthalyl-betulinic acid for the first time. Finally, several betulinic acid esters (compounds 57-66) were synthesized using the optimal operation conditions which were obtained by the RSM technique. Esterification of betulinic acid with various anhydrides was performed at 54ºC in a mixture of n-hexane- chloroform (1:1, v/v) for 20.3 hours, catalyzed by Novozym 435, gave 24.7 to 79.3% yield. Five new compounds (58, 62, 64, 65 and 66) were synthesized for the first time in the present study. In brief, the anti-cancer activity of betulinic acid (1) and its 3-O-acylated derivatives (compounds 57-66) were evaluated against human lung carcinoma (A549) and human ovarian (CAOV3) cancer cell lines. In particular, compounds (59), (61) and (63) were found to show IC50 < 10 μg/ml against A549 cancer cell line tested and showed better cytotoxicity than betulinic acid. In the ovarian cancer cell line, all betulinic acid derivatives prepared revealed weaker cytotoxicity than betulinic acid

    Spectroscopic data of 3-O-acetyl-betulinic acid: an antitumor reagent

    Get PDF
    In this paper, the spectroscopic data of the 3-O-acetyl betulinic acid is reported. This compound was prepared by enzymatic reaction of betulinic acid and acetic anhydride in the presence of lipase from Candida antarctica (Novozem® 435) at 54oC for 20 h in 79.3 % yield

    Enzymatic synthesis of betulinic acid ester as an anticancer agent: optimization study

    Get PDF
    Immobilized Candida antarctica lipase, Novozym 435, was used to catalyze the esterification reaction between betulinic acid and phthalic anhydride to synthesize 3-O-phthalyl betulinic acid in n-hexane/chloroform. Response surface methodology based on a five-level, four-variable central composite rotatable design was employed to evaluate the effects of synthesis parameters such as reaction time, reaction temperature, enzyme amount and substrate molar ratio on the yield of ester. Based on the response surface model, the optimal enzymatic synthesis conditions were predicted to be: reaction time 20.3 h, reaction temperature 53.9°C, enzyme amount 145.6 mg, betulinic acid to phthalic anhydride molar ratio 1:1.11. The predicted yield was 65.8% and the actual yield was 64.7%

    Anticancer activity of 3-O-acylated betulinic acid derivative obtained by enzymatic synthesis

    Get PDF
    An easy and efficient strategy to prepare betulinic acid esters with various anhydrides was used by the enzymatic synthesis method. It involves lipase-catalyzed acylation of betulinic acid with anhydrides as acylating agents in organic solvent. Lipase from Candida antarctica immobilized on an acrylic resin (Novozym 435) was employed as a biocatalyst. Several 3-O-acyl-betulinic acid derivatives were successfully obtained by this procedure. The anticancer activity of betulinic acid and its 3-O-acylated derivatives were then evaluated in vitro against human lung carcinoma (A549) and human ovarian (CAOV3) cancer cell lines. 3-O-glutaryl-betulinic acid, 3-O-acetyl-betulinic acid, and 3-O-succinyl-betulinic acid showed IC(50)<10 microg/ml against A549 cancer cell line tested and showed better cytotoxicity than betulinic acid. In an ovarian cancer cell line, all betulinic acid derivatives prepared showed weaker cytotoxicity than betulinic acid

    Artificial neural network modeling studies to predict the yield of enzymatic synthesis of betulinic acid ester

    Get PDF
    3β-O-phthalic ester of betulinic acid was synthesized from reaction of betulinic acid and phthalic anhydride using lipase as biocatalyst. This ester has clinical potential as an anticancer agent. In this study, artificial neural network (ANN) analysis of Candida antarctica lipase (Novozym 435) -catalyzed esterification of betulinic acid with phthalic anhydride was carried out. A multilayer feed-forward neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model. The input parameters of the model are reaction time, reaction temperature, enzyme amount and substrate molar ratio while the percentage isolated yield of ester is the output. Four different training algorithms, belonging to two classes, namely gradient descent and Levenberg-Marquardt (LM), were used to train ANN. The paper makes a robust comparison of the performances of the above four algorithms employing standard statistical indices. The results showed that the quick propagation algorithm (QP) with 4-9-1 arrangement gave the best performances. The root mean squared error (RMSE), coefficient of determination (R2) and absolute average deviation (AAD) between the actual and predicted yields were determined as 0.0335, 0.9999 and 0.0647 for training set, 0.6279, 0.9961 and 1.4478 for testing set and 0.6626, 0.9488 and 1.0205 for validation set using quick propagation algorithm (QP)

    Artificial neural network modeling studies to predict the yield of enzymatic synthesis of betulinic acid ester

    Get PDF
    3\u3b2-O-phthalic ester of betulinic acid was synthesized from reaction of betulinic acid and phthalic anhydride using lipase as biocatalyst. This ester has clinical potential as an anticancer agent. In this study, artificial neural network (ANN) analysis of Candida antarctica lipase (Novozym 435) -catalyzed esterification of betulinic acid with phthalic anhydride was carried out. A multilayer feed-forward neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model. The input parameters of the model are reaction time, reaction temperature, enzyme amount and substrate molar ratio while the percentage isolated yield of ester is the output. Four different training algorithms, belonging to two classes, namely gradient descent and Levenberg-Marquardt (LM), were used to train ANN. The paper makes a robust comparison of the performances of the above four algorithms employing standard statistical indices. The results showed that the quick propagation algorithm (QP) with 4-9-1 arrangement gave the best performances. The root mean squared error (RMSE), coefficient of determination (R2) and absolute average deviation (AAD) between the actual and predicted yields were determined as 0.0335, 0.9999 and 0.0647 for training set, 0.6279, 0.9961 and 1.4478 for testing set and 0.6626, 0.9488 and 1.0205 for validation set using quick propagation algorithm (QP)

    Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity

    Get PDF
    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24–1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28–9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles

    A Pyridyltriazol Functionalized Zirconium Metal-Organic Framework for Selective and Highly Efficient Adsorption of Palladium

    Full text link
    [EN] This work reports the synthesis of pyridyltriazol-functionalized UiO-66 (UiO stands for University of Oslo), namely, UiO-66-Pyta, from UiO-66-NH2 through three postsynthetic modification (PSM) steps. The good performance of the material derives from the observation that partial formylation (similar to 21% of -NHCHO groups) of H2BDC-NH2 by DMF, as persistent impurity, takes place during the synthesis of the UiO-66-NH2. Thus, to enhance material performance, first, the as-synthesized UiO-66-NH2 was deformylated to give pure UiO-66-NH2. Subsequently, the pure UiO-66-NH2 was converted to UiO-66-N-3 with a nearly complete conversion (similar to 95%). Finally, the azide-alkyne[3+2]-cycloaddition reaction of 2-ethynylpyridine with the UiO-66-N-3 gave the UiO-66-Pyta. The porous MOF was then applied for the solid-phase extraction of palladium ions from an aqueous medium. Affecting parameters on extraction efficiency of Pd(II) ions were also investigated and optimized. Interestingly, UiO-66-Pyta exhibited selective and superior adsorption capacity for Pd(II) with a maximum sorption capacity of 294.1 mg.g(-1) at acidic pH (4.5). The limit of detection (LOD) was found to be 1.9 mu g L-1. The estimated intra- and interday precisions are 3.6 and 1.7%, respectively. Moreover, the adsorbent was regenerated and reused for five cycles without any significant change in the capacity and repeatability. The adsorption mechanism was described based on various techniques such as FT-IR, PXRD, SEM/EDS, ICP-AES, and XPS analyses as well as density functional theory (DFT) calculations. Notably, as a case study, the obtained UiO-66-Pyta after palladium adsorption, UiO-66-Pyta-Pd, was used as an efficient catalyst for the Suzuki-Miyaura cross-coupling reaction.Authors gratefully acknowledge the financial support for this work from the Politecnica de Valencia, Valencia, Spain. Also, financial support by the University of Zabol is gratefully acknowledged (grant nos. UOZ-GR-9517-1 and UOZ-GR-9618-53).Daliran, S.; Ghazagh-Miri, M.; Oveisi, AR.; Khajeh, M.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; Ghaffari-Moghaddam, M.... (2020). A Pyridyltriazol Functionalized Zirconium Metal-Organic Framework for Selective and Highly Efficient Adsorption of Palladium. ACS Applied Materials & Interfaces. 12(22):25221-25232. https://doi.org/10.1021/acsami.0c06672S25221252321222Zereini, F., & Alt, F. (Eds.). (2006). Palladium Emissions in the Environment. doi:10.1007/3-540-29220-9Rao, C. R. ., & Reddi, G. . (2000). Platinum group metals (PGM); occurrence, use and recent trends in their determination. TrAC Trends in Analytical Chemistry, 19(9), 565-586. doi:10.1016/s0165-9936(00)00031-5Sharma, S., Krishna Kumar, A. S., & Rajesh, N. (2017). A perspective on diverse adsorbent materials to recover precious palladium and the way forward. RSC Advances, 7(82), 52133-52142. doi:10.1039/c7ra10153hCrundwell, F. K., Moats, M. S., Ramachandran, V., Robinson, T. G., & Davenport, W. G. (2011). Platinum-Group Metals, Production, Use and Extraction Costs. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, 395-409. doi:10.1016/b978-0-08-096809-4.10031-0Cieszynska, A., & Wieczorek, D. (2018). Extraction and separation of palladium(II), platinum(IV), gold(III) and rhodium(III) using piperidine-based extractants. Hydrometallurgy, 175, 359-366. doi:10.1016/j.hydromet.2017.12.019Ghezzi, L., Robinson, B. H., Secco, F., Tiné, M. R., & Venturini, M. (2008). Removal and recovery of palladium(II) ions from water using micellar-enhanced ultrafiltration with a cationic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 329(1-2), 12-17. doi:10.1016/j.colsurfa.2008.06.037Mahmoud, A., & Hoadley, A. F. A. (2012). An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Research, 46(10), 3364-3376. doi:10.1016/j.watres.2012.03.039Fotovat, H., Khajeh, M., Oveisi, A. R., Ghaffari-Moghaddam, M., & Daliran, S. (2018). A hybrid material composed of an amino-functionalized zirconium-based metal-organic framework and a urea-based porous organic polymer as an efficient sorbent for extraction of uranium(VI). Microchimica Acta, 185(10). doi:10.1007/s00604-018-2991-3Serencam, H., Bulut, V. N., Tufekci, M., Gundogdu, A., Duran, C., Hamza, S., & Soylak, M. (2013). Separation and pre-concentration of palladium(II) from environmental and industrial samples by formation of a derivative of 1,2,4-triazole complex on Amberlite XAD–2010 resin. International Journal of Environmental Analytical Chemistry, 93(14), 1484-1499. doi:10.1080/03067319.2012.755676Soylak, M., Elci, L., & Dogan, M. (2000). A Sorbent Extraction Procedure for the Preconcentration of Gold, Silver and Palladium on an Activated Carbon Column. Analytical Letters, 33(3), 513-525. doi:10.1080/00032710008543070Zhou, L., Xu, J., Liang, X., & Liu, Z. (2010). Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. Journal of Hazardous Materials, 182(1-3), 518-524. doi:10.1016/j.jhazmat.2010.06.062Liu, L., Li, C., Bao, C., Jia, Q., Xiao, P., Liu, X., & Zhang, Q. (2012). Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta, 93, 350-357. doi:10.1016/j.talanta.2012.02.051Liu, L., Liu, S., Zhang, Q., Li, C., Bao, C., Liu, X., & Xiao, P. (2012). Adsorption of Au(III), Pd(II), and Pt(IV) from Aqueous Solution onto Graphene Oxide. Journal of Chemical & Engineering Data, 58(2), 209-216. doi:10.1021/je300551cAwual, M. R., Khaleque, M. A., Ratna, Y., & Znad, H. (2015). Simultaneous ultra-trace palladium(II) detection and recovery from wastewater using new class meso-adsorbent. Journal of Industrial and Engineering Chemistry, 21, 405-413. doi:10.1016/j.jiec.2014.02.053Sharma, S., Wu, C.-M., Koodali, R. T., & Rajesh, N. (2016). An ionic liquid-mesoporous silica blend as a novel adsorbent for the adsorption and recovery of palladium ions, and its applications in continuous flow study and as an industrial catalyst. RSC Advances, 6(32), 26668-26678. doi:10.1039/c5ra26673dLin, S., Kumar Reddy, D. H., Bediako, J. K., Song, M.-H., Wei, W., Kim, J.-A., & Yun, Y.-S. (2017). Effective adsorption of Pd(ii), Pt(iv) and Au(iii) by Zr(iv)-based metal–organic frameworks from strongly acidic solutions. Journal of Materials Chemistry A, 5(26), 13557-13564. doi:10.1039/c7ta02518aHan, X., Yang, S., & Schröder, M. (2019). Porous metal–organic frameworks as emerging sorbents for clean air. Nature Reviews Chemistry, 3(2), 108-118. doi:10.1038/s41570-019-0073-7Chen, Z., Hanna, S. L., Redfern, L. R., Alezi, D., Islamoglu, T., & Farha, O. K. (2019). Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coordination Chemistry Reviews, 386, 32-49. doi:10.1016/j.ccr.2019.01.017Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., … Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184. doi:10.1039/c7cs00033bDaliran, S., Santiago-Portillo, A., Navalón, S., Oveisi, A. R., Álvaro, M., Ghorbani-Vaghei, R., … García, H. (2018). Cu(II)-Schiff base covalently anchored to MIL-125(Ti)-NH2 as heterogeneous catalyst for oxidation reactions. Journal of Colloid and Interface Science, 532, 700-710. doi:10.1016/j.jcis.2018.07.140Yin, Z., Wan, S., Yang, J., Kurmoo, M., & Zeng, M.-H. (2019). Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coordination Chemistry Reviews, 378, 500-512. doi:10.1016/j.ccr.2017.11.015Tchalala, M. R., Bhatt, P. M., Chappanda, K. N., Tavares, S. R., Adil, K., Belmabkhout, Y., … Eddaoudi, M. (2019). Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nature Communications, 10(1). doi:10.1038/s41467-019-09157-2Zha, M., Liu, J., Wong, Y.-L., & Xu, Z. (2015). Extraction of palladium from nuclear waste-like acidic solutions by a metal–organic framework with sulfur and alkene functions. Journal of Materials Chemistry A, 3(7), 3928-3934. doi:10.1039/c4ta06678bYuan, N., Pascanu, V., Huang, Z., Valiente, A., Heidenreich, N., Leubner, S., … Zou, X. (2018). Probing the Evolution of Palladium Species in Pd@MOF Catalysts during the Heck Coupling Reaction: An Operando X-ray Absorption Spectroscopy Study. Journal of the American Chemical Society, 140(26), 8206-8217. doi:10.1021/jacs.8b03505Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256hXiao, J.-D., & Jiang, H.-L. (2018). Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis. Accounts of Chemical Research, 52(2), 356-366. doi:10.1021/acs.accounts.8b00521Sun, D., Ye, L., & Li, Z. (2015). Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Applied Catalysis B: Environmental, 164, 428-432. doi:10.1016/j.apcatb.2014.09.054Rojas, S., Arenas-Vivo, A., & Horcajada, P. (2019). Metal-organic frameworks: A novel platform for combined advanced therapies. Coordination Chemistry Reviews, 388, 202-226. doi:10.1016/j.ccr.2019.02.032Bobbitt, N. S., Mendonca, M. L., Howarth, A. J., Islamoglu, T., Hupp, J. T., Farha, O. K., & Snurr, R. Q. (2017). Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chemical Society Reviews, 46(11), 3357-3385. doi:10.1039/c7cs00108hRojas, S., Baati, T., Njim, L., Manchego, L., Neffati, F., Abdeljelil, N., … Horcajada, P. (2018). Metal–Organic Frameworks as Efficient Oral Detoxifying Agents. Journal of the American Chemical Society, 140(30), 9581-9586. doi:10.1021/jacs.8b04435Yuan, S., Qin, J.-S., Lollar, C. T., & Zhou, H.-C. (2018). Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 4(4), 440-450. doi:10.1021/acscentsci.8b00073Bai, Y., Dou, Y., Xie, L.-H., Rutledge, W., Li, J.-R., & Zhou, H.-C. (2016). Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 45(8), 2327-2367. doi:10.1039/c5cs00837aKnapp, J. G., Zhang, X., Elkin, T., Wolfsberg, L. E., Hanna, S. L., Son, F. A., … Farha, O. K. (2020). Single crystal structure and photocatalytic behavior of grafted uranyl on the Zr-node of a pyrene-based metal–organic framework. CrystEngComm, 22(11), 2097-2102. doi:10.1039/c9ce02034aHowarth, A. J., Katz, M. J., Wang, T. C., Platero-Prats, A. E., Chapman, K. W., Hupp, J. T., & Farha, O. K. (2015). High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal–Organic Frameworks. Journal of the American Chemical Society, 137(23), 7488-7494. doi:10.1021/jacs.5b03904Drout, R. J., Howarth, A. J., Otake, K., Islamoglu, T., & Farha, O. K. (2018). Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs. CrystEngComm, 20(40), 6140-6145. doi:10.1039/c8ce00992aAudu, C. O., Nguyen, H. G. T., Chang, C.-Y., Katz, M. J., Mao, L., Farha, O. K., … Nguyen, S. T. (2016). The dual capture of AsV and AsIII by UiO-66 and analogues. Chemical Science, 7(10), 6492-6498. doi:10.1039/c6sc00490cKobielska, P. A., Howarth, A. J., Farha, O. K., & Nayak, S. (2018). Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 358, 92-107. doi:10.1016/j.ccr.2017.12.010Ali Akbar Razavi, S., & Morsali, A. (2019). Linker functionalized metal-organic frameworks. Coordination Chemistry Reviews, 399, 213023. doi:10.1016/j.ccr.2019.213023Moghaddam, Z. S., Kaykhaii, M., Khajeh, M., & Oveisi, A. R. (2018). Synthesis of UiO-66-OH zirconium metal-organic framework and its application for selective extraction and trace determination of thorium in water samples by spectrophotometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 194, 76-82. doi:10.1016/j.saa.2018.01.010Chang, Z., Li, F., Qi, X., Jiang, B., Kou, J., & Sun, C. (2020). Selective and efficient adsorption of Au (III) in aqueous solution by Zr-based metal-organic frameworks (MOFs): An unconventional way for gold recycling. Journal of Hazardous Materials, 391, 122175. doi:10.1016/j.jhazmat.2020.122175Yee, K.-K., Reimer, N., Liu, J., Cheng, S.-Y., Yiu, S.-M., Weber, J., … Xu, Z. (2013). Effective Mercury Sorption by Thiol-Laced Metal–Organic Frameworks: in Strong Acid and the Vapor Phase. Journal of the American Chemical Society, 135(21), 7795-7798. doi:10.1021/ja400212kFu, L., Wang, S., Lin, G., Zhang, L., Liu, Q., Zhou, H., … Wen, S. (2019). Post-modification of UiO-66-NH2 by resorcyl aldehyde for selective removal of Pb(II) in aqueous media. Journal of Cleaner Production, 229, 470-479. doi:10.1016/j.jclepro.2019.05.043Saleem, H., Rafique, U., & Davies, R. P. (2016). Investigations on post-synthetically modified UiO-66-NH 2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous and Mesoporous Materials, 221, 238-244. doi:10.1016/j.micromeso.2015.09.043Peng, Y., Huang, H., Zhang, Y., Kang, C., Chen, S., Song, L., … Zhong, C. (2018). A versatile MOF-based trap for heavy metal ion capture and dispersion. Nature Communications, 9(1). doi:10.1038/s41467-017-02600-2Jindabot, S., Teerachanan, K., Thongkam, P., Kiatisevi, S., Khamnaen, T., Phiriyawirut, P., … Sangtrirutnugul, P. (2014). Palladium(II) complexes featuring bidentate pyridine–triazole ligands: Synthesis, structures, and catalytic activities for Suzuki–Miyaura coupling reactions. Journal of Organometallic Chemistry, 750, 35-40. doi:10.1016/j.jorganchem.2013.10.046Ervithayasuporn, V., Kwanplod, K., Boonmak, J., Youngme, S., & Sangtrirutnugul, P. (2015). Homogeneous and heterogeneous catalysts of organopalladium functionalized-polyhedral oligomeric silsesquioxanes for Suzuki–Miyaura reaction. Journal of Catalysis, 332, 62-69. doi:10.1016/j.jcat.2015.09.014Pintado-Sierra, M., Rasero-Almansa, A. M., Corma, A., Iglesias, M., & Sánchez, F. (2013). Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. Journal of Catalysis, 299, 137-145. doi:10.1016/j.jcat.2012.12.004Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-xZhao, Y., & Truhlar, D. G. (2005). Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions. The Journal of Physical Chemistry A, 109(25), 5656-5667. doi:10.1021/jp050536cFrisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09 Rev. A.02, Gaussian Inc.: Wallingford, CT, 2009.Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1), 270-283. doi:10.1063/1.448799Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82(1), 299-310. doi:10.1063/1.448975Azarifar, D., Ghorbani-Vaghei, R., Daliran, S., & Oveisi, A. R. (2017). A Multifunctional Zirconium-Based Metal-Organic Framework for the One-Pot Tandem Photooxidative Passerini Three-Component Reaction of Alcohols. ChemCatChem, 9(11), 1992-2000. doi:10.1002/cctc.201700169Wang, X., Chen, W., Zhang, L., Yao, T., Liu, W., Lin, Y., … Li, Y. (2017). Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. Journal of the American Chemical Society, 139(28), 9419-9422. doi:10.1021/jacs.7b01686Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953Liang, H. F., & Wang, Z. C. (2010). Adsorption of bovine serum albumin on functionalized silica-coated magnetic MnFe2O4 nanoparticles. Materials Chemistry and Physics, 124(2-3), 964-969. doi:10.1016/j.matchemphys.2010.07.073Wu, R., Qu, J., & Chen, Y. (2005). Magnetic powder MnO–Fe2O3 composite—a novel material for the removal of azo-dye from water. Water Research, 39(4), 630-638. doi:10.1016/j.watres.2004.11.005Tan, Y., Wang, K., Yan, Q., Zhang, S., Li, J., & Ji, Y. (2019). Synthesis of Amino-Functionalized Waste Wood Flour Adsorbent for High-Capacity Pb(II) Adsorption. ACS Omega, 4(6), 10475-10484. doi:10.1021/acsomega.9b00920Howarth, A. J., Liu, Y., Hupp, J. T., & Farha, O. K. (2015). Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm, 17(38), 7245-7253. doi:10.1039/c5ce01428jNagarjuna, R., Sharma, S., Rajesh, N., & Ganesan, R. (2017). Effective Adsorption of Precious Metal Palladium over Polyethyleneimine-Functionalized Alumina Nanopowder and Its Reusability as a Catalyst for Energy and Environmental Applications. ACS Omega, 2(8), 4494-4504. doi:10.1021/acsomega.7b00431Veerakumar, P., Thanasekaran, P., Lu, K.-L., Liu, S.-B., & Rajagopal, S. (2017). Functionalized Silica Matrices and Palladium: A Versatile Heterogeneous Catalyst for Suzuki, Heck, and Sonogashira Reactions. ACS Sustainable Chemistry & Engineering, 5(8), 6357-6376. doi:10.1021/acssuschemeng.7b00921Singuru, R., Dhanalaxmi, K., Shit, S. C., Reddy, B. M., & Mondal, J. (2017). Palladium Nanoparticles Encaged in a Nitrogen-Rich Porous Organic Polymer: Constructing a Promising Robust Nanoarchitecture for Catalytic Biofuel Upgrading. ChemCatChem, 9(13), 2550-2564. doi:10.1002/cctc.201700186Liu, J., Hao, J., Hu, C., He, B., Xi, J., Xiao, J., … Bai, Z. (2018). Palladium Nanoparticles Anchored on Amine-Functionalized Silica Nanotubes as a Highly Effective Catalyst. The Journal of Physical Chemistry C, 122(5), 2696-2703. doi:10.1021/acs.jpcc.7b10237Fortgang, P., Tite, T., Barnier, V., Zehani, N., Maddi, C., Lagarde, F., … Chaix, C. (2016). Robust Electrografting on Self-Organized 3D Graphene Electrodes. ACS Applied Materials & Interfaces, 8(2), 1424-1433. doi:10.1021/acsami.5b10647Bi, F., Zhang, X., Chen, J., Yang, Y., & Wang, Y. (2020). Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation. Applied Catalysis B: Environmental, 269, 118767. doi:10.1016/j.apcatb.2020.118767Jiang, D., Fang, G., Tong, Y., Wu, X., Wang, Y., Hong, D., … Li, X. (2018). Multifunctional Pd@UiO-66 Catalysts for Continuous Catalytic Upgrading of Ethanol to n-Butanol. ACS Catalysis, 8(12), 11973-11978. doi:10.1021/acscatal.8b04014Nguyen, H. G. T., Mao, L., Peters, A. W., Audu, C. O., Brown, Z. J., Farha, O. K., … Nguyen, S. T. (2015). Comparative study of titanium-functionalized UiO-66: support effect on the oxidation of cyclohexene using hydrogen peroxide. Catalysis Science & Technology, 5(9), 4444-4451. doi:10.1039/c5cy00825eWang, C., Liu, X., Chen, J. P., & Li, K. (2015). Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Scientific Reports, 5(1). doi:10.1038/srep16613Manna, K., Ji, P., Lin, Z., Greene, F. X., Urban, A., Thacker, N. C., & Lin, W. (2016). Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes. Nature Communications, 7(1). doi:10.1038/ncomms12610Pearson, R. G. (1963). Hard and Soft Acids and Bases. Journal of the American Chemical Society, 85(22), 3533-3539. doi:10.1021/ja00905a00

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe
    corecore