785 research outputs found

    One-electron self energies and spectral functions for the t-J model in the large-N limit

    Full text link
    Using a recently developed perturbative approach, which considers Hubbard operators as fundamental excitations, we have performed electronic self-energy and spectral function calculations for the t−Jt-J model on the square lattice. We have found that the spectral functions along the Fermi surface are isotropic, even close to the critical doping where the dd-density wave phase takes place. Fermi liquid behavior with scattering rate ∌ω2\sim \omega^2 and a finite quasiparticle weight ZZ was obtained. ZZ decreases with decreasing doping taking low values for low doping. Results are compared with other ones, analytical and numerical like slave-boson and Lanczos diagonalization finding agreement. We discuss our results in the light of recent ARPESARPES experiments in cuprates.Comment: 10 pages, 9 figures, accepted for publication in Phys. Rev.

    Renormalization of the elementary excitations in hole- and electron-doped cuprates due to spin fluctuations

    Full text link
    Extending our previous studies we present results for the doping-, momentum-, frequency-, and temperature- dependence of the kink-like change of the quasiparticle velocity resulting from the coupling to spin fluctuations. In the nodal direction a kink is found in both the normal and superconducting state while in the antinodal direction a kink occurs only below TcT_c due to the opening of the superconducting gap. A pronounced kink is obtained only for hole-doped, but not for electron-doped cuprates and is characteristically different from what is expected due to electron-phonon interaction. We further demonstrate that the kink structure is intimately connected to the resonance peak seen in inelastic neutron scattering. Our results suggest similar effects in other unconventional superconductors like Sr2RuO4{Sr}_2{RuO}_4.Comment: revised version, 12 pages, 19 figures. accepted for publication in PR

    The Anomalous Infrared Emission of Abell 58

    Get PDF
    We present a new model to explain the excess in mid and near infrared emission of the central, hydrogen poor dust knot in the planetary nebula (PN) Abell 58. Current models disagree with ISO measurement because they apply an average grain size and equilibrium conditions only. We investigate grain size distributions and temperature fluctuations affecting infrared emission using a new radiative transfer code and discuss in detail the conditions requiring an extension of the classical description. The peculiar infrared emission of V605 Aql, the central dust knot in Abell 58, has been modeled with our code. V605 Aql is of special interest as it is one of only three stars ever observed to move from the evolutionary track of a central PN star back to the post-AGB state.Comment: 17 pages, 4 figures; accepted and to be published in Ap

    Anomalous Self-Energy Effects of the B_1g Phonon in Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 Films

    Full text link
    In Raman spectra of cuprate superconductors the gap shows up both directly, via a redistribution of the electronic background, the so-called "2Delta peaks", and indirectly, e.g. via the renormalization of phononic excitations. We use a model that allows us to study the redistribution and the related phonon self-energy effects simultaneously. We apply this model to the B_1g phonon of Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 films, where Pr or Ca substitution enables us to investigate under- and overdoped samples. While various self-energy effects can be explained by the strength and energy of the 2\Delta peaks, anomalies remain. We discuss possible origins of these anomalies.Comment: 6 pages including 4 figure

    Theory for phonon-induced superconductivity in MgB2_2

    Full text link
    We analyze superonductivity in MgB2_2 observed below Tc=39T_c=39 K resulting from electron-phonon coupling involving a mode at ℏω1=24\hbar \omega_1 = 24 meV and most importantly the in-plane B-B E2gE_{2g} vibration at ℏω2=67\hbar \omega_2=67 meV. The quasiparticles originating from π\pi- and σ\sigma-states couple strongly to the low-frequency mode and the E2gE_{2g}-vibrations respectively. Using two-band Eliashberg theory, λπ=1.4\lambda_{\pi} = 1.4 and λσ=0.7\lambda_{\sigma} = 0.7, we calculate the gap functions Δi(ω,0)\Delta^{i}(\omega,0) (i=πi=\pi, σ\sigma). Our results provide an explanation of recent tunneling experiments. We get Hc2ab/Hc2c≈3.9H^{ab}_{c_2}/H^{c}_{c_2} \approx 3.9.Comment: revised version, accepted for publication in PR

    Interplay of Electron-Phonon Interaction and Electron Correlation in High Temperature Superconductivity

    Get PDF
    We study the electron-phonon interaction in the strongly correlated superconducting cuprates. Two types of the electron-phonon interactions are introduced in the t−Jt-J model; the diagonal and off-diagonal interactions which modify the formation energy of the Zhang-Rice singlet and its transfer integral, respectively. The characteristic phonon-momentum (q⃗)(\vec q) and electron-momentum (k⃗)(\vec k) dependence resulted from the off-diagonal coupling can explain a variety of experiments. The vertex correction for the electron-phonon interaction is formulated in the SU(2) slave-boson theory by taking into account the collective modes in the superconducting ground states. It is shown that the vertex correction enhances the attractive potential for the d-wave paring mediated by phonon with q⃗=(π(1−ή),0)\vec q=(\pi(1-\delta), 0) around ή≅0.3\delta \cong 0.3 which corresponds to the half-breathing mode of the oxygen motion.Comment: 14 pages, 13 figure

    Interplay between electron-phonon and Coulomb interactions in cuprates

    Full text link
    Evidence for strong electron-phonon coupling in high-Tc cuprates is reviewed, with emphasis on the electron and phonon spectral functions. Effects due to the interplay between the Coulomb and electron-phonon interactions are studied. For weakly doped cuprates, the phonon self-energy is strongly reduced due to correlation effects, while there is no corresponding strong reduction for the electron self-energy. Polaron formation is studied, focusing on effects of Coulomb interaction and antiferromagnetic correlations. It is argued that experimental indications of polaron formation in undoped cuprates are due to a strong electron-phonon interaction for these systems.Comment: 43 pages and 22 figure

    Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.

    Get PDF
    Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity

    Electronic States in the Antiferromagnetic Phase of Electron-Doped High-Tc Cuprates

    Full text link
    We investigate the electronic states in the antiferromagnetic (AF) phase of electron-doped cuprates by using numerically exact diagonalization technique for a t-t'-t''-J model. When AF correlation develops with decreasing temperature, a gaplike behavior emerges in the optical conductivity. Simultaneously, the coherent motion of carriers due to the same sublattice hoppings is enhanced. We propose that the phase is characterized as an AF state with small Fermi surface around the momentum k=(\pi,0) and (0,\pi). This is a remarkable contrast to the behavior of hole-doped cuprates.Comment: RevTeX, 5 pages, 4 figures, to appear in Phys. Rev. B Brief Report

    Direct penetration of spin-triplet superconductivity into a ferromagnet in Au/SrRuO3/Sr2RuO4 junctions

    Get PDF
    Efforts have been ongoing to establish superconducting spintronics utilizing ferromagnet/superconductor heterostructures1. Previously reported devices are based on spin-singlet superconductors (SSCs), where the spin degree of freedom is lost. Spin-polarized supercurrent induction in ferromagnetic metals (FMs) is achieved even with SSCs, but only with the aid of interfacial complex magnetic structures, which severely affect information imprinted to the electron spin. Use of spin-triplet superconductors (TSCs) with active spins potentially overcomes this difficulty and further leads to novel functionalities. Here, we report spin-triplet superconductivity induction into a FM SrRuO3 from a leading TSC candidate Sr2RuO4, by fabricating microscopic devices using an epitaxial SrRuO3/Sr2RuO4 hybrid. The differential conductance, exhibiting Andreev-reflection features with multiple energy scales up to around half tesla, indicates the penetration of superconductivity over a considerable distance of 15 nm across the SrRuO3 layer without help of interfacial complex magnetism. This demonstrates the first FM/TSC device exhibiting the spin-triplet proximity effect
    • 

    corecore