3 research outputs found

    PTH and LIPUS on Osteoporotic Fracture Healing

    Get PDF
    Osteoporotic fracture has become a major public health problem, and until today, the treatments available are not satisfactory. While there is growing evidence to support the individual treatment of parathyroid hormone (PTH) administration and low-intensity pulsed ultrasound (LIPUS) exposure as respectively systemic and local therapies during osteoporotic fracture healing, their effects have not yet been investigated when introduced concurrently. This study aimed to evaluate the effects of combined treatment with PTH (1–34) and LIPUS on fracture healing in ovariectomized (OVX) rats. Thirty-two, 12-week-old female Sprague–Dawley rats were OVX to induce osteoporosis. After 12 weeks, the rats underwent surgery to create bilateral mid-diaphyseal fractures of proximal tibiae. All animals were randomly divided into 4 groups (n = 8 for each): control group as placebo, PTH group, LIPUS group, and combined group. PTH group had PTH administration at a dose of 30 lg/kg/day for 3 days/week for 6 weeks. LIPUS group received ultrasound 5 days/week for 20 min/day for 6 weeks and combined group had both PTH administration and LIPUS exposure for 6 weeks. Fracture healing was observed weekly by anteroposterior radiography and micro-CT. Five weeks after the fracture, the tibia were harvested to permit histological assessments and at week 6, for mechanical property of the fracture callus. Micro-CT showed that the PTH and combined groups exhibited significantly higher BMD and trabecular bone integrity than control group at weeks 4–6. Radiography, fracture healing score and mean callus area indicated that the combined group revealed better healing processes than the individual groups. Mechanically, bending moment to failure was significantly higher in LIPUS, PTH and combined groups than in control group. These data suggest that the combined treatment of PTH and LIPUS have been shown to accelerate fracture bone healing and enhance bone properties rather than single agent therapy, and may be considered as a treatment remedy for fracture healing in postmenopausal osteoporosis

    低出力パルス超音波は自己免疫疾患での唾液腺炎による唾液分泌低下を改善する

    Get PDF
    Introduction: Low-intensity pulsed ultrasound (LIPUS) has been known to promote bone healing by nonthermal effects. In recent studies, LIPUS has been shown to reduce inflammation in injured soft tissues. Xerostomia is one of the most common symptoms in Sjögren syndrome (SS). It is caused by a decrease in the quantity or quality of saliva. The successful treatment of xerostomia is still difficult to achieve and often unsatisfactory. The aim of this study is to clarify the therapeutic effects of LIPUS on xerostomia in SS. Methods: Human salivary gland acinar (NS-SV-AC) and ductal (NS-SV-DC) cells were cultured with or without tumor necrosis factor-α (TNF-α; 10 ng/ml) before LIPUS or sham exposure. The pulsed ultrasound signal was transmitted at a frequency of 1.5 MHz or 3 MHz with a spatial average intensity of 30 mW/cm2 and a pulse rate of 20 %. Cell number, net fluid secretion rate, and expression of aquaporin 5 (AQP5) and TNF-α were subsequently analyzed. Inhibitory effects of LIPUS on the nuclear factor κB (NF-κB) pathway were determined by Western blot analysis. The effectiveness of LIPUS in recovering salivary secretion was also examined in a MRL/MpJ/lpr/lpr (MRL/lpr) mouse model of SS with autoimmune sialadenitis. Results: TNF-α stimulation of NS-SV-AC and NS-SV-DC cells resulted in a significant decrease in cell number and net fluid secretion rate (p < 0.01), whereas LIPUS treatment abolished them (p < 0.05). The expression changes of AQP5 and TNF-α were also inhibited in LIPUS treatment by blocking the NF-κB pathway. Furthermore, we found that mRNA expression of A20, a negative feedback regulator, was significantly increased by LIPUS treatment after TNF-α or interleukin 1β stimulation (NS-SV-AC, p < 0.01; NS-SV-DC, p < 0.05). In vivo LIPUS exposure to MRL/lpr mice exhibited a significant increase in both salivary flow and AQP5 expression by reducing inflammation in salivary glands (p < 0.01). Conclusions: These results suggest that LIPUS upregulates expression of AQP5 and inhibits TNF-α production. Thus, LIPUS may restore secretion by inflamed salivary glands. It may synergistically activate negative feedback of NF-κB signaling in response to inflammatory stimulation. Collectively, LIPUS might be a new strategic therapy for xerostomia in autoimmune sialadenitis with SS
    corecore