28 research outputs found

    Torsion and the Gravity Dual of Parity Symmetry Breaking in AdS4/CFT3 Holography

    Full text link
    We study four dimensional gravity with a negative cosmological constant deformed by the Nieh-Yan torsional topological invariant with a spacetime-dependent coefficient. We find an exact solution of the Euclidean system, which we call the torsion vortex, having two asymptotic AdS4 regimes supported by a pseudoscalar with a kink profile. We propose that the torsion vortex is the holographic dual of a three dimensional system that exhibits distinct parity breaking vacua. The torsion vortex represents a (holographic) transition between these distinct vacua. We expect that from the boundary point of view, the torsion vortex represents a `domain wall' between the two distinct vacua. From a bulk point of view, we point out an intriguing identification of the parameters of the torsion vortex with those of an Abrikosov vortex in a Type I superconductor. Following the analogy, we find that external Kalb-Ramond flux then appears to support bubbles of flat spacetime within an asymptotically AdS geometry.Comment: 26 pages, 4 figures; v2: minor improvements, references adde

    A 3D Videoconferencing System with 2D Backwards Compatibility

    No full text
    no abstrac

    Statistical model of paroxysmal atrial fibrillation catheter ablation targets for pulmonary vein isolation

    No full text
    Atrial fibrillation (AF) is the most common cardiac arrhythmia. Pulmonary vein isolation (PVI) by catheter ablation is a cornerstone treatment of paroxysmal AF. Low success rates are mainly due to reconnecting tissue. Local myocardial wall-thickness (WT) information is missing; lesion transmurality is impossible to estimate. WT information can be obtained from pencil beam high-resolution MRI, a time-consuming protocol. To reduce scan time, automatic selection of regions of interest is proposed. We developed a left atrial target probability model for paroxysmal AF ablation, based on intraprocedural ablation targeting data of fifteen patients, to support the selection of these regions. A common mesh serves as a reference for registration of the electroanatomical meshes and ablation targets using landmark registration and the Iterative Closest Points algorithm. This is followed by projection of the ablation targets onto the mean mesh model, closure of isolated ablation voids on the surface and Gaussian smoothing of the probability distribution. The final probability distribution clearly shows PVI contours as suggested in the consensus statement by European associations. The right inferior pulmonary vein (RIPV) shows a lower ablation probability, which may be due to limited maneuverability of the ablation catheter and the proximity of the RIPV ostium and the transseptal puncture, where the catheter enters the left atrium
    corecore