92 research outputs found

    Correction to: The experiences of people with incomplete spinal cord injury or disease during intensive balance training and the impact of the program: A qualitative study (Spinal Cord, (2022), 10.1038/s41393-022-00823-9)

    Get PDF
    The original version of this article contained a spelling error in an author name. The last name of the corresponding author, Dr. Kristin Musselman, should be corrected from Mussleman to Musselman. The original article has been corrected

    Electrophysiological Correlates of Changes in Reaction Time Based on Stimulus Intensity

    Get PDF
    Background: Although reaction time is commonly used as an indicator of central nervous system integrity, little is currently understood about the mechanisms that determine processing time. In the current study, we are interested in determining the differences in electrophysiological events associated with significant changes in reaction time that could be elicited by changes in stimulus intensity. The primary objective is to assess the effect of increasing stimulus intensity on the latency and amplitude of afferent inputs to the somatosensory cortex, and their relation to reaction time. Methods: Median nerve stimulation was applied to the non-dominant hand of 12 healthy young adults at two different stimulus intensities (HIGH & LOW). Participants were asked to either press a button as fast as possible with their dominant hand or remain quiet following the stimulus. Electroencephalography was used to measure somatosensory evoked potentials (SEPs) and event related potentials (ERPs). Electromyography from the flexor digitorum superficialis of the button-pressing hand was used to assess reaction time. Response time was the time of button press. Results: Reaction time and response time were significantly shorter following the HIGH intensity stimulus compared to the LOW intensity stimulus. There were no differences in SEP (N20 & P24) peak latencies and peak-to-peak amplitude for the two stimulus intensities. ERPs, locked to response time, demonstrated a significantly larger pre-movement negativity to positivity following the HIGH intensity stimulus over the Cz electrode

    Promoting Optimal Physical Exercise for Life: An Exercise and Self-Management Program to Encourage Participation in Physical Activity after Discharge from Stroke Rehabilitation—A Feasibility Study

    Get PDF
    People with stroke do not achieve adequate levels of physical exercise following discharge from rehabilitation. We developed a group exercise and self-management program (PROPEL), delivered during stroke rehabilitation, to promote uptake of physical activity after discharge. This study aimed to establish the feasibility of a larger study to evaluate the effect of this program on participation in self-directed physical activity. Participants with subacute stroke were recruited at discharge from one of three rehabilitation hospitals; one hospital offered the PROPEL program whereas the other two did not (comparison group; COMP). A high proportion (11/16) of eligible PROPEL program participants consented to the study. Fifteen COMP participants were also recruited. Compliance with wearing an accelerometer for 6 weeks continuously and completing physical activity questionnaires was high (>80%), whereas only 34% of daily heart rate data were available. Individuals who completed the PROPEL program seemed to have higher outcome expectations for exercise, fewer barriers to physical activity, and higher participation in physical activity than COMP participants (Hedge’s g≥0.5). The PROPEL program delivered during stroke rehabilitation shows promise for reducing barriers to exercise and increasing participation in physical activity after discharge. This study supports feasibility of a larger randomized trial to evaluate this program

    A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research investigating exercise as a means of falls prevention in older adults has shown mixed results. Lack of specificity of the intervention may be an important factor contributing to negative results. Change-in-support (CIS) balance reactions, which involve very rapid stepping or grasping movements of the limbs, play a critical role in preventing falls; hence, a training program that improves ability to execute effective CIS reactions could potentially have a profound effect in reducing risk of falling. This paper describes: 1) the development of a perturbation-based balance training program that targets specific previously-reported age-related impairments in CIS reactions, and 2) a study protocol to evaluate the efficacy of this new training program.</p> <p>Methods/Design</p> <p>The training program involves use of unpredictable, multi-directional moving-platform perturbations to evoke stepping and grasping reactions. Perturbation magnitude is gradually increased over the course of the 6-week program, and concurrent cognitive and movement tasks are included during later sessions. The program was developed in accordance with well-established principles of motor learning, such as individualisation, specificity, overload, adaptation-progression and variability. Specific goals are to reduce the frequency of multiple-step responses, reduce the frequency of collisions between the stepping foot and stance leg, and increase the speed of grasping reactions. A randomised control trial will be performed to evaluate the efficacy of the training program. A total of 30 community-dwelling older adults (age 64–80) with a recent history of instability or falling will be assigned to either the perturbation-based training or a control group (flexibility/relaxation training), using a stratified randomisation that controls for gender, age and baseline stepping/grasping performance. CIS reactions will be tested immediately before and after the six weeks of training, using platform perturbations as well as a distinctly different method of perturbation (waist pulls) in order to evaluate the generalisability of the training effects.</p> <p>Discussion</p> <p>This study will determine whether perturbation-based balance training can help to reverse specific age-related impairments in balance-recovery reactions. These results will help to guide the development of more effective falls prevention programs, which may ultimately lead to reduced health-care costs and enhanced mobility, independence and quality of life.</p

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF
    Background Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19.Methods The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 µg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 µg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (antispike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing.Findings Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6–77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3–214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030–27 162), which increased to 37 460 ELU/mL (31 996–43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41–1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996–30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826–64 452), with a geometric mean fold change of 2·19 (1·90–2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37–14·32) and 15·90 (12·92–19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24–16·54] in the BNT162b2 group and 6·22 [3·90–9·92] in the mRNA-1273 group).Interpretation Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose

    Visual feedback of the centre of gravity to optimize standing balance

    No full text
    Force platform biofeedback training, whereby concurrent visual feedback of the centre of pressure (COP) is provided, has previously been used for balance training. Since the goal of balance is to maintain control of the centre of gravity (COG), specific feedback of the COG may be more likely than COP feedback to improve overall balance control. The purpose of this study was to compare the effect of concurrent visual feedback of the COP versus COG on postural control during a novel quiet standing task. Thirty-two young healthy adults (20-35 years old) were recruited. Participants were randomly assigned to receive concurrent visual feedback of either the COP or COG while standing on a foam pad. Training occurred over one session (20-30-second trials). Retention and transfer testing (i.e. without concurrent visual feedback) occurred after ∼24h. Variability of the COG decreased, variability of COP-COG increased, and sample entropy increased with concurrent visual feedback. With practice, variability of COP, COG and COP-COG decreased whereas sample entropy increased. The decrease in variability of COP-COG was greater for those who received COG feedback than those who received COP feedback. Training effects on COP, COG and COP-COG variability were not retained after 24h and removal of visual feedback. However, on retention and transfer testing, sample entropy was significantly higher than on baseline testing, indicating more 'automatic' postural control. These results suggest that concurrent visual feedback of neither the COP nor COG is superior for improving quiet standing balance control.We acknowledge the support of Toronto Rehabilitation Institute. Equipment and space have been funded with grants from the Canadian Foundation for Innovation, Ontario Innovation Trust, and The Ministry of Research and Innovation

    Force Plate Assessment of Quiet Standing Balance Control: Perspectives on Clinical Application within Stroke Rehabilitation

    No full text
    Assessment of balance control is essential to guide physical rehabilitation poststroke. However, current observational assessment tools available to physiotherapists provide limited information about underlying dyscontrol. This paper describes a force plate-based assessment of quiet standing balance control that we have implemented for individuals attending inpatient stroke rehabilitation. The assessment uses two force plates to measure location of ground reaction forces to maintain stability in quiet standing in five conditions (eyes open, eyes closed, standing symmetrically, and maximal loading on the less-affected and more-affected limbs). Measures of interest are variability of the centers of pressure under each foot and both feet combined, weight-bearing asymmetry, and correlation of center of pressure fluctuations between limbs. We present representative values for the above-mentioned measures and case examples to illustrate how the assessment can reveal patient-specific balance control problems and direct treatment. We identify limitations to our current assessment and recommendations for future research
    • …
    corecore