1,030 research outputs found

    Spectroscopy of the enigmatic short-period cataclysmic variable IR Com in an extended low state

    Full text link
    We report the occurrence of a deep low state in the eclipsing short-period cataclysmic variable IR Com, lasting more than two years. Spectroscopy obtained in this state shows the system as a detached white dwarf plus low-mass companion, indicating that accretion has practically ceased. The spectral type of the companion derived from the SDSS spectrum is M6-7, somewhat later than expected for the orbital period of IR Com. Its radial velocity amplitude, K_2=419.6+-3.4 km/s, together with the inclination of 75-90deg implies 0.8Msun<Mwd<1.0Msun. We estimate the white dwarf temperature to be ~15000K, and the absence of Zeeman splitting in the Balmer lines rules out magnetic fields in excess of ~5 MG. IR Com still defies an unambiguous classification, in particular the occurrence of a deep, long low state is so far unique among short-period CVs that are not strongly magnetic.Comment: Revised version, MNRAS Letters in pres

    Collective close calling mediates group cohesion in foraging meerkats via spatially determined differences in call rates

    Get PDF
    During group movements, many socially living and group-foraging animals produce contact calls. Contact calls typically function to coordinate and maintain cohesion among group members by providing receivers with information on the callers' location or movement-related motivation. Previous work suggests that meerkats, Suricata suricatta, also produce short-range contact calls, so-called ‘close calls’, while foraging to maintain group cohesion. Yet, the underlying mechanism of how meerkats coordinate cohesion via close calling is unclear. Using a combination of field observations and playback experiments we here show that foraging meerkats adjusted the call rates of their continuously produced close calls depending on their spatial position to group members. Specifically, meerkats called at higher rates when foraging at a closer distance to and when surrounded by conspecifics; however, the number of calling individuals or their call rates did not affect a subject's close call rate. Overall, close call playbacks elicited a call response in receivers and attracted them to the sound source. Our results suggest that differences in individual close call rates are determined by a meerkat's proximity to other group members, being assessed through their vocal interactions. We discuss how local differences in individual call rates may extrapolate to the group level, where emerging ‘vocal hotspots’ indicate areas of high individual density, in turn attracting and potentially guiding group members' movements. Hence, the described pattern illustrates a so far undocumented call mechanism where local differences in the call rates of continuously produced close calls can generate a group level pattern that mediates the cohesion of progressively moving animal groups

    Do team processes really have an effect on clinical performance? A systematic literature review

    Full text link
    There is a growing literature on the relationship between team processes and clinical performance. The purpose of this review is to summarize these articles and examine the impact of team process behaviours on clinical performance. We conducted a literature search in five major databases. Inclusion criteria were: English peer-reviewed papers published between January 2001 and May 2012, which showed or tried to show (i) a statistical relationship of a team process variable and clinical performance or (ii) an improvement of a performance variable through a team process intervention. Study quality was assessed using predefined quality indicators. For every study, we calculated the relevant effect sizes. We included 28 studies in the review, seven of which were intervention studies. Every study reported at least one significant relationship between team processes or an intervention and performance. Also, some non-significant effects were reported. Most of the reported effect sizes were large or medium. The study quality ranged from medium to high. The studies are highly diverse regarding the specific team process behaviours investigated and also regarding the methods used. However, they suggest that team process behaviours do influence clinical performance and that training results in increased performance. Future research should rely on existing theoretical frameworks, valid, and reliable methods to assess processes such as teamwork or coordination and focus on the development of adequate tools to assess process performance, linking them with outcomes in the clinical setting

    Social organization of a solitary carnivore: spatial behaviour, interactions and relatedness in the slender mongoose

    Full text link
    The majority of carnivore species are described as solitary, but little is known about their social organization and interactions with conspecifics. We investigated the spatial organization and social interactions as well as relatedness of slender mongooses (Galerella sanguinea) living in the southern Kalahari. This is a little studied small carnivore previously described as solitary with anecdotal evidence for male associations. In our study population, mongooses arranged in spatial groups consisting of one to three males and up to four females. Male ranges, based on sleeping sites, were large and overlapping, encompassing the smaller and more exclusive female ranges. Spatial groups could be distinguished by their behaviour, communal denning and home range. Within spatial groups animals communally denned in up to 33% of nights, mainly during winter months, presumably to gain thermoregulatory benefits. Associations of related males gained reproductive benefits likely through increased territorial and female defence. Our study supports slender mongooses to be better described as solitary foragers living in a complex system of spatial groups with amicable social interactions between specific individuals. We suggest that the recognition of underlying ‘hidden' complexities in these apparently ‘solitary' organizations needs to be accounted for when investigating group living and social behaviour

    Call concatenation in wild meerkats

    Get PDF
    Repertoire size, frequently determined by the number of discrete call types, has been used to assess vocal complexity in animals. However, species can also increase their communicative complexity by using graded signals or by combining individual calls. Animal call sequences can be divided into two main categories, each subdivided into two classes: repetitions, with either an unlimited or finite number of iterations of the same call type, and mixed call combinations, composed of two or more graded or discrete call types. Social contexts involve a wide range of behaviours and, unlike predation contexts, can be associated with both positive and negative emotions. Therefore, interactions linked to social contexts may place additional demands on an animal's communicative system and lead to the use of call combinations. We systematically documented call combinations produced by wild meerkats, Suricata suricatta, a highly social carnivore, in social contexts in their natural habitat. We observed 12 distinct call combinations belonging to all four classes of combination, produced in all the observed behavioural contexts. Four combinations were each produced in a specific context whereas the remaining eight were produced in several contexts, albeit in different proportions. The broad use of combinations suggests that they represent a non-negligible part of meerkat social communication and that they can be used in flexible ways across various behavioural contexts. Comparison with combinations produced in predation contexts indicated that social call combinations are more varied in number of classes and structural complexity than the former, perhaps due to the greater variety of social contexts. However, in meerkats, combinations of functionally referential calls have been documented in predation but not social contexts, suggesting that both social and predation pressures may play a role in the evolution of combinatoriality in animal communication

    Vocalization-associated respiration patterns: thermography-based monitoring and detection of preparation for calling

    Full text link
    Vocal emission requires coordination with the respiratory system. Monitoring the increase in laryngeal pressure, which is needed for vocal production, allows detection of transitions from quiet respiration to vocalization-supporting respiration. Characterization of these transitions could be used to identify preparation for vocal emission and to examine the probability of it manifesting into an actual vocal production event. Specifically, overlaying the subject's respiration with conspecific calls can highlight events of call initiation and suppression, as a means of signalling coordination and avoiding jamming. Here, we present a thermal imaging-based methodology for synchronized respiration and vocalization monitoring of free-ranging meerkats. The sensitivity of this methodology is sufficient for detecting transient changes in the subject's respiration associated with the exertion of vocal production. The differences in respiration are apparent not only during the vocal output, but also prior to it, marking the potential time frame of the respiratory preparation for calling. A correlation between conspecific calls with elongation of the focal subject's respiration cycles could be related to fluctuations in attention levels or in the motivation to reply. This framework can be used for examining the capability for enhanced respiration control in animals during modulated and complex vocal sequences, detecting ‘failed’ vocalization attempts and investigating the role of respiration cues in the regulation of vocal interactions
    • …
    corecore