21 research outputs found

    Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics

    Get PDF
    Alcohol dehydrogenases (ADH) participate in the biosynthetic pathway of aroma volatiles in fruit by interconverting aldehydes to alcohols and providing substrates for the formation of esters. Two highly divergent ADH genes (15% identity at the amino acid level) of Cantaloupe Charentais melon (Cucumis melo var. Cantalupensis) have been isolated. Cm-ADH1 belongs to the medium-chain zinc-binding type of ADHs and is highly similar to all ADH genes expressed in fruit isolated so far. Cm-ADH2 belongs to the short-chain type of ADHs. The two encoded proteins are enzymatically active upon expression in yeast. Cm-ADH1 has strong preference for NAPDH as a co-factor, whereas Cm-ADH2 preferentially uses NADH. Both Cm-ADH proteins are much more active as reductases with Kms 10–20 times lower for the conversion of aldehydes to alcohols than for the dehydrogenation of alcohols to aldehydes. They both show strong preference for aliphatic aldehydes but Cm-ADH1 is capable of reducing branched aldehydes such as 3-methylbutyraldehyde, whereas Cm-ADH2 cannot. Both Cm-ADH genes are expressed specifically in fruit and up-regulated during ripening. Gene expression as well as total ADH activity are strongly inhibited in antisense ACC oxidase melons and in melon fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. These data suggest that each of the Cm-ADH protein plays a specific role in the regulation of aroma biosynthesis in melon fruit

    Nonhalogenated organic molecules from Laurencia algae

    Get PDF
    The marine red algae of the genus Laurencia have produced more 700 secondary metabolites and exhibited high molecular diversity and intriguing bioactivity. Since the halogenated structures have been comprehensively reviewed previously, this review, covering up to the end of 2012, mainly focuses on the source, structure elucidation, and bioactivity of nonhalogenated organic molecules from Laurencia spp. as well as the relationship between nonhalogenated and halogenated products. Overall, 173 new or new naturally occurring compounds with 58 skeletons, mainly including sesquiterpenes, diterpenes, triterpenes, and C15-acetogenins, are described.The marine red algae of the genus Laurencia have produced more 700 secondary metabolites and exhibited high molecular diversity and intriguing bioactivity. Since the halogenated structures have been comprehensively reviewed previously, this review, covering up to the end of 2012, mainly focuses on the source, structure elucidation, and bioactivity of nonhalogenated organic molecules from Laurencia spp. as well as the relationship between nonhalogenated and halogenated products. Overall, 173 new or new naturally occurring compounds with 58 skeletons, mainly including sesquiterpenes, diterpenes, triterpenes, and C-15-acetogenins, are described
    corecore